Interaction between genes, environment, the microbiome and metabolome in type 2 diabetes and metabolic syndrome
2 型糖尿病和代谢综合征中基因、环境、微生物组和代谢组之间的相互作用
基本信息
- 批准号:10153768
- 负责人:
- 金额:$ 54.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibioticsBiochemical PathwayBreedingCarbohydratesCecumCommunitiesDataDevelopmentDiabetes MellitusDietDiseaseEnvironmentEpidemicExerciseFatty acid glycerol estersFructoseGenesGeneticGenetic RiskGermGerm-FreeGlucose IntoleranceGoalsGrantHigh Fat DietHumanIn VitroInsulinInsulin ResistanceLaboratoriesLaboratory miceLinkMediator of activation proteinMetabolicMetabolic syndromeMetabolismMetagenomicsModelingMolecularMouse StrainsMusNon-Insulin-Dependent Diabetes MellitusNutrientObesityPathogenesisPhenotypePlasmaPlayPredispositionProcessProductionResistanceRodentRoleType 2 diabeticWeightWorkdiabetes riskdiet and exercisediet-induced obesityfecal transplantationgene environment interactiongene productgut microbiomegut microbiotain vivoinsulin signalingmetabolic phenotypemetabolomemetabolomicsmetagenomemicrobialmicrobiomemicrobiome alterationmicrobiotamicrobiota metabolitesmouse modelnon-diabeticnovelobesity developmentresponse
项目摘要
We are in the midst of a worldwide epidemic of diabetes and obesity. A central component of these disorders is insulin resistance. Insulin resistance is the product of gene-environment interactions. A recently identified major mediator of these gene-environment interactions is the gut microbiome. To begin to dissect the role of the microbiome in gene-environment interactions in the pathogenesis of type 2 diabetes and obesity, we have developed a novel model taking advantage of three strains of laboratory mice: C57Bl6/J and 129S1 mice from Jax (B6J and 129J) and 129S6 mice from Taconic (129T). When challenged with high fat diet (HFD), B6J mice are insulin resistant and obesity- and diabetes-prone, while 129J mice are insulin sensitive and obesity- and diabetes-resistant. 129T mice, which are similar genetically to 129J, on the other hand, gain almost as much weight as B6J mice on HFD, but remain insulin sensitive and non-diabetic, i.e., are a model of “metabolically healthy” obesity. While genetics plays a role in these phenotypic differences, the microbiome also contributes. Thus, some of these differences can be reduced or modified by breeding the mice in the same environment or by treating the mice with antibiotics to alter the microbiome. These differences in phenotype are paralleled by differences in insulin signaling at the molecular level. Importantly, the propensity to metabolic syndrome and abnormalities in insulin signaling can be transferred in part to germ-free mice by fecal transplant. Using non-targeted metabolomics, we have shown that these effects of the microbiome are associated with dramatic changes in the levels of multiple circulating metabolites, including both known and unknowns. The major goal of this project is to identify microbiota and metabolites which are altered by the changing microbiome and contribute to insulin resistance and metabolic dysregulation. The specific aims are: 1) Using our robust model of mice on three different genetic backgrounds, we will define how changes in gut microbiota, as assessed by metagenomic analysis, in response to high fat and high carbohydrate diets, as well as exercise, are related to alterations in insulin signaling and metabolic phenotype; we will also determine how host-genetics interacts with gut microbiota to affect the metabolome by microbiome transfer into mice with different genetic risk of diabetes and metabolic syndrome. 2) Define how changes in the community of microbiota and their metagenomic representation relate to changes in the plasma/cecal metabolome across all models, and how these contribute to the insulin resistance in these models. We will also integrate the metabolomics data to create complete metabolic networks. 3) Integrate metabolomic data across all models to prioritize the unknown metabolites linked to insulin resistance for identification; and determine how both the known and the newly-identified unknown metabolites linked to insulin resistance alter insulin signaling in vitro and in vivo. Together these data will allow us to define the role of the microbiome and its associated metabolome in insulin
resistance and metabolic dysregulation and how these interact with host genetics in this process.
我们正处于糖尿病和肥胖症的全球流行之中。这些疾病的一个核心组成部分是胰岛素抵抗。胰岛素抵抗是基因与环境相互作用的产物。最近发现的这些基因-环境相互作用的主要媒介是肠道微生物组。为了开始分析微生物组在2型糖尿病和肥胖发病机制中基因-环境相互作用中的作用,我们利用三种实验室小鼠:来自Jax的C57Bl6/J和129S1小鼠(B6J和129J)和来自Taconic的129S6小鼠(129T)建立了一个新的模型。在高脂肪饮食(HFD)的刺激下,B6J小鼠表现出胰岛素抵抗、肥胖和易患糖尿病,而129J小鼠表现出胰岛素敏感、肥胖和易患糖尿病。另一方面,与129J基因相似的129T小鼠,在HFD上增加的体重几乎与B6J小鼠一样多,但仍保持胰岛素敏感和非糖尿病,即是“代谢健康”肥胖的模型。虽然基因在这些表型差异中起作用,但微生物组也起作用。因此,通过在相同的环境中饲养小鼠或用抗生素治疗小鼠以改变微生物组,可以减少或修改其中的一些差异。这些表型差异与胰岛素信号在分子水平上的差异是平行的。重要的是,代谢综合征的倾向和胰岛素信号异常可以通过粪便移植部分转移到无菌小鼠身上。使用非靶向代谢组学,我们已经表明,微生物组的这些影响与多种循环代谢物水平的急剧变化有关,包括已知的和未知的。该项目的主要目标是确定微生物群和代谢物,这些微生物群被变化的微生物群所改变,并有助于胰岛素抵抗和代谢失调。具体目标是:1)使用我们的三种不同遗传背景的小鼠模型,我们将定义通过宏基因组分析评估的肠道微生物群变化如何响应高脂肪和高碳水化合物饮食以及运动,与胰岛素信号传导和代谢表型的改变相关;我们还将确定宿主遗传学如何与肠道微生物群相互作用,通过将微生物组转移到具有不同糖尿病和代谢综合征遗传风险的小鼠中来影响代谢组。2)定义微生物群落及其宏基因组表征的变化如何与所有模型中血浆/盲肠代谢组的变化相关,以及这些变化如何促进这些模型中的胰岛素抵抗。我们还将整合代谢组学数据以创建完整的代谢网络。3)整合所有模型的代谢组学数据,优先考虑与胰岛素抵抗相关的未知代谢物进行鉴定;并确定已知和新发现的与胰岛素抵抗相关的未知代谢物如何在体外和体内改变胰岛素信号。这些数据将使我们能够确定微生物组及其相关代谢组在胰岛素中的作用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C RONALD KAHN其他文献
C RONALD KAHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C RONALD KAHN', 18)}}的其他基金
Alterations in Post-Receptor Insulin Signaling in Diabetes and Insulin Resistance
糖尿病和胰岛素抵抗中受体后胰岛素信号的改变
- 批准号:
10362395 - 财政年份:2021
- 资助金额:
$ 54.82万 - 项目类别:
Alterations in Post-Receptor Insulin Signaling in Diabetes and Insulin Resistance
糖尿病和胰岛素抵抗中受体后胰岛素信号的改变
- 批准号:
10490337 - 财政年份:2021
- 资助金额:
$ 54.82万 - 项目类别:
Alterations in Post-Receptor Insulin Signaling in Diabetes and Insulin Resistance
糖尿病和胰岛素抵抗中受体后胰岛素信号的改变
- 批准号:
10665775 - 财政年份:2021
- 资助金额:
$ 54.82万 - 项目类别:
Interaction between genes, environment, the microbiome and metabolome in type 2 diabetes and metabolic syndrome
2 型糖尿病和代谢综合征中基因、环境、微生物组和代谢组之间的相互作用
- 批准号:
10563140 - 财政年份:2020
- 资助金额:
$ 54.82万 - 项目类别:
Interaction between genes, environment, the microbiome and metabolome in type 2 diabetes and metabolic syndrome
2 型糖尿病和代谢综合征中基因、环境、微生物组和代谢组之间的相互作用
- 批准号:
10348756 - 财政年份:2020
- 资助金额:
$ 54.82万 - 项目类别:
Noninvasive Measurement of UCP1 in Brown Adipose Tissue
棕色脂肪组织中 UCP1 的无创测量
- 批准号:
8302245 - 财政年份:2011
- 资助金额:
$ 54.82万 - 项目类别:
Noninvasive Measurement of UCP1 in Brown Adipose Tissue
棕色脂肪组织中 UCP1 的无创测量
- 批准号:
8189215 - 财政年份:2011
- 资助金额:
$ 54.82万 - 项目类别:
Developmental genes, miRNAs and adipose tissue
发育基因、miRNA 和脂肪组织
- 批准号:
8828173 - 财政年份:2009
- 资助金额:
$ 54.82万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 54.82万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 54.82万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 54.82万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 54.82万 - 项目类别:
Studentship














{{item.name}}会员




