Synthetic gene sensors and effectors to redirect organoid development

合成基因传感器和效应器可重定向类器官的发育

基本信息

  • 批准号:
    10155771
  • 负责人:
  • 金额:
    $ 68.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary Human induced pluripotent stem cell (hiPSC)-derived organoids hold great promise for tissue engineering and personalized drug screening, but obtaining the desired multicellular organization and function from these systems is usually performed in an ad hoc fashion without forward design specification. Recently, we reported successful liver bud formation containing stromal cells, vascular tube-like structures and hematopoiesis-like processes by synthetically inducing diversity in GATA6 expression from a single hiPSC population. This accomplishment suggests that expanding circuit logic operations to artificially control differentiation drivers at particular bifurcations in lineage specification could profoundly impact the complexity and functionality of organoids. In this project, we bring together mathematical modeling, machine learning, optimization, and innovative synthetic biology techniques to elucidate and design fundamental decision and communication rules for guiding cells into complex, heterogeneous tissues. Our overarching hypothesis is that appropriate timing and predictable stochastic control of the expression of intracellular and extracellular factors is critical for redirecting lineage choices in order to elicit desired multicellular organization from a population of differentiating cells. We will develop synthetic tools for sensing differentiation stages of iPSC-derived organoids and construct and characterize a stochastic commitment switch in an inducible reporter system. These tools will be integrated in synthetic gene circuits for engineering emergent multicellular organization through stochastic temporal control of developmental factors. The modular commitment switches developed in this project will be capable of exploring how the degree of subpopulation biasing of cell fate decisions and level of cell fate synchronization at bipotent differentiation stages impacts self-assembly and emergent multicellular organization of an organoid. Our aims - executed through a closed loop of computational and experimental investigations - will shed insight on how generalizable methods of controlled manipulation can elicit desired organoid-level emergent properties.
项目摘要 人类诱导的多能干细胞(HIPSC)衍生的类器官对组织工程和 个性化的药物筛查,但从中获得所需的多细胞组织和功能 系统通常以临时方式执行,而无需前瞻性设计规范。最近,我们报道 成功的肝芽形成,含有基质细胞,血管管状结构和造血样 通过合成诱导单个HIPSC种群的GATA6表达的多样性来进行的过程。这 成就表明,扩大电路逻辑操作以人为地控制差异化驱动程序 谱系规范中的特定分叉可能会深刻影响 器官。在这个项目中,我们将数学建模,机器学习,优化和 创新的合成生物学技术阐明和设计基本决策和交流规则 将细胞引导成复杂的异质组织。我们的总体假设是适当的时机和 细胞内和细胞外因子表达的可预测随机控制对于重定向至关重要 谱系选择是为了从分化细胞的人群中引起所需的多细胞组织。我们 将开发合成工具,以感知IPSC衍生的类器官和构造的分化阶段 表征可诱导记者系统中的随机承诺开关。这些工具将集成 通过随机时间控制,用于工程紧急多细胞组织的合成基因电路 发展因素。该项目中开发的模块化承诺开关将能够 探索细胞命运决策的亚群偏置程度和细胞命运同步的水平 两性分化阶段会影响器官的自组装和新兴的多细胞组织。 我们的目标 - 通过计算和实验调查的封闭循环执行 - 将洞察力 关于可控操作的可推广方法如何引起所需的类器官级的新兴特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Calin Belta其他文献

Calin Belta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Calin Belta', 18)}}的其他基金

Synthetic gene sensors and effectors to redirect organoid development
合成基因传感器和效应器可重定向类器官的发育
  • 批准号:
    10571876
  • 财政年份:
    2021
  • 资助金额:
    $ 68.26万
  • 项目类别:
Synthetic gene sensors and effectors to redirect organoid development
合成基因传感器和效应器可重定向类器官的发育
  • 批准号:
    10397569
  • 财政年份:
    2021
  • 资助金额:
    $ 68.26万
  • 项目类别:

相似国自然基金

蛋白酶体抑制剂硼替佐米(Bortezomib)对血管渗漏的改善及机制研究
  • 批准号:
    81772041
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
p18及Cdc42/PKCα介导VE-cadherin再循环调控内皮屏障功能的作用及机制研究
  • 批准号:
    81600059
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Myd88在急性胰腺炎致肠道微循环血管内皮细胞损伤中的作用及机制研究
  • 批准号:
    81501644
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
预动员CD133+祖细胞旁分泌Ang-1在缓解体外循环术后急性肺损伤中作用初探
  • 批准号:
    81500062
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Bioengineered Model of Tumor Vessel Interactions in Pancreatic Cancer
胰腺癌肿瘤血管相互作用的生物工程模型
  • 批准号:
    10373531
  • 财政年份:
    2022
  • 资助金额:
    $ 68.26万
  • 项目类别:
A Bioengineered Model of Tumor Vessel Interactions in Pancreatic Cancer
胰腺癌肿瘤血管相互作用的生物工程模型
  • 批准号:
    10557226
  • 财政年份:
    2022
  • 资助金额:
    $ 68.26万
  • 项目类别:
Synthetic gene sensors and effectors to redirect organoid development
合成基因传感器和效应器可重定向类器官的发育
  • 批准号:
    10571876
  • 财政年份:
    2021
  • 资助金额:
    $ 68.26万
  • 项目类别:
Synthetic gene sensors and effectors to redirect organoid development
合成基因传感器和效应器可重定向类器官的发育
  • 批准号:
    10397569
  • 财政年份:
    2021
  • 资助金额:
    $ 68.26万
  • 项目类别:
Notch1 and APP signaling in cerebral microvascular dysfunction
Notch1和APP信号传导在脑微血管功能障碍中的作用
  • 批准号:
    10196086
  • 财政年份:
    2021
  • 资助金额:
    $ 68.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了