Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum

可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化

基本信息

  • 批准号:
    10162661
  • 负责人:
  • 金额:
    $ 79.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-02 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Structural variation (SV) is a major driver of genome organization, content, and diversity. Over the last decade, many studies have demonstrated the significance of SV to the genetic architecture of neuropsychiatric disorders (NPDs) such as autism spectrum disorder (ASD), schizophrenia, bipolar disorder, and ADHD. These studies have suggested a significant impact of SV within individual disorders, as well as shared genetic etiology across a spectrum of NPDs. However, despite this etiological relevance, most studies of SV in NPDs have focused on large canonical copy number variation (CNV) using microarray technologies. Population genetic studies have paralleled these efforts, as most SV databases are dominated by array-based CNV data. Several whole-genome sequencing (WGS) references have now been created to characterize SV, such as the 1000 Genomes Project in ~2,500 individuals. These datasets have been invaluable to human genetic research; however, they have captured a small fraction of SV that is accessible to WGS and are limited in ancestral diversity, primarily due to limitations in technologies, algorithms, and sample sizes. These challenges have also reduced the value of these reference for clinical interpretation of SV in diagnostic screening. This study will provide maps of canonical and complex SVs on a scale >50-fold that of the 1000 Genomes Project by systematically analyzing aggregated WGS datasets in the genome aggregation consortium (gnomAD). We will integrate our completed prototype of a scalable tool for cloud-based SV discovery within the universally accessible Genome Analysis Toolkit (GATK- SV; Aim 1). GATK-SV will provide an open source framework that can capture a spectrum of canonical and complex SV, within the capabilities of short-read WGS, and will include a module for extensibility to long-read WGS. We will apply these methods across the aggregation of diverse ancestries in gnomAD, a WGS extension of our Exome Aggregation Consortium (ExAC) (Aim 2). The gnomAD dataset currently includes 85,000 WGS samples, and this resource will exceed 150,000 genomes by the conclusion of Aim 2. We will use this reference to define genomic regions recalcitrant to SV and provide systematic measures of SV constraint. We will then perform WGS association analyses across >60,000 genomes in individuals with NPDs, including ASD, schizophrenia, and bipolar disorder cases (Aim 3). In combination with the gnomAD SV maps and the integration of microarray-based CNV aggregation, these analyses will be well powered to quantify the relative risk conferred by SV in each individual disorder, and to explore shared risk across the NPD spectrum. Each aim will apply innovative approaches to yield novel products, and we will freely distribute these tools, maps, and analyses without restriction. Importantly, these data will also provide benchmarked references for diagnostic interpretation across diverse ancestries, and an analytical framework for future population-scale genomic medicine initiatives.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL E TALKOWSKI其他文献

MICHAEL E TALKOWSKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL E TALKOWSKI', 18)}}的其他基金

The Genomic Architecture of Pregnancy Loss
流产的基因组结构
  • 批准号:
    10705318
  • 财政年份:
    2021
  • 资助金额:
    $ 79.35万
  • 项目类别:
Core B - Technical Services
核心 B - 技术服务
  • 批准号:
    10613364
  • 财政年份:
    2021
  • 资助金额:
    $ 79.35万
  • 项目类别:
The Genomic Architecture of Pregnancy Loss
流产的基因组结构
  • 批准号:
    10226655
  • 财政年份:
    2021
  • 资助金额:
    $ 79.35万
  • 项目类别:
Core B - Technical Services
核心 B - 技术服务
  • 批准号:
    10463548
  • 财政年份:
    2021
  • 资助金额:
    $ 79.35万
  • 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
  • 批准号:
    9809586
  • 财政年份:
    2019
  • 资助金额:
    $ 79.35万
  • 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
  • 批准号:
    10414009
  • 财政年份:
    2019
  • 资助金额:
    $ 79.35万
  • 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
  • 批准号:
    10004116
  • 财政年份:
    2019
  • 资助金额:
    $ 79.35万
  • 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
  • 批准号:
    10224767
  • 财政年份:
    2018
  • 资助金额:
    $ 79.35万
  • 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
  • 批准号:
    9982392
  • 财政年份:
    2018
  • 资助金额:
    $ 79.35万
  • 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
  • 批准号:
    10737203
  • 财政年份:
    2018
  • 资助金额:
    $ 79.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 79.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了