Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
基本信息
- 批准号:10162661
- 负责人:
- 金额:$ 79.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-02 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllelesApacheAttention deficit hyperactivity disorderBasic ScienceBenchmarkingBiological SciencesBiologyBipolar DisorderChromatinClinicalClinical ResearchCodeCommunitiesComplexCopy Number PolymorphismCountryDataData SetDatabasesDetectionDiagnosticDiseaseElementsEtiologyFree WillFreezingFutureGenesGenetic Population StudyGenetic Predisposition to DiseaseGenetic ResearchGenetsGenomeGenomic SegmentGenomic medicineHumanHuman GeneticsHuman GenomeIndividualInheritedInstitutesMapsMeasuresMethodsMicroarray AnalysisModelingMosaicismMutationPhasePopulationReference ValuesRelative RisksRepetitive SequenceResearchResourcesRiskSample SizeSamplingSchizophreniaSiteSourceSpecificityStructureTechnologyTrans-Omics for Precision MedicineUnited States National Institutes of HealthVariantautism spectrum disorderbaseclinical diagnosticscloud basedcohortdiagnostic screeningdisorder riskethnic diversityexomegenetic architecturegenome analysisgenome sequencinggenome-wideinnovationneuropsychiatric disorderneuropsychiatrynovelopen sourceopen source toolprogramsprototypepsychogeneticsrisk sharingtoolweb interfacewhole genome
项目摘要
ABSTRACT
Structural variation (SV) is a major driver of genome organization, content, and diversity. Over the last decade,
many studies have demonstrated the significance of SV to the genetic architecture of neuropsychiatric disorders
(NPDs) such as autism spectrum disorder (ASD), schizophrenia, bipolar disorder, and ADHD. These studies
have suggested a significant impact of SV within individual disorders, as well as shared genetic etiology across
a spectrum of NPDs. However, despite this etiological relevance, most studies of SV in NPDs have focused on
large canonical copy number variation (CNV) using microarray technologies. Population genetic studies have
paralleled these efforts, as most SV databases are dominated by array-based CNV data. Several whole-genome
sequencing (WGS) references have now been created to characterize SV, such as the 1000 Genomes Project
in ~2,500 individuals. These datasets have been invaluable to human genetic research; however, they have
captured a small fraction of SV that is accessible to WGS and are limited in ancestral diversity, primarily due to
limitations in technologies, algorithms, and sample sizes. These challenges have also reduced the value of these
reference for clinical interpretation of SV in diagnostic screening. This study will provide maps of canonical and
complex SVs on a scale >50-fold that of the 1000 Genomes Project by systematically analyzing aggregated
WGS datasets in the genome aggregation consortium (gnomAD). We will integrate our completed prototype of
a scalable tool for cloud-based SV discovery within the universally accessible Genome Analysis Toolkit (GATK-
SV; Aim 1). GATK-SV will provide an open source framework that can capture a spectrum of canonical and
complex SV, within the capabilities of short-read WGS, and will include a module for extensibility to long-read
WGS. We will apply these methods across the aggregation of diverse ancestries in gnomAD, a WGS extension
of our Exome Aggregation Consortium (ExAC) (Aim 2). The gnomAD dataset currently includes 85,000 WGS
samples, and this resource will exceed 150,000 genomes by the conclusion of Aim 2. We will use this reference
to define genomic regions recalcitrant to SV and provide systematic measures of SV constraint. We will then
perform WGS association analyses across >60,000 genomes in individuals with NPDs, including ASD,
schizophrenia, and bipolar disorder cases (Aim 3). In combination with the gnomAD SV maps and the integration
of microarray-based CNV aggregation, these analyses will be well powered to quantify the relative risk conferred
by SV in each individual disorder, and to explore shared risk across the NPD spectrum. Each aim will apply
innovative approaches to yield novel products, and we will freely distribute these tools, maps, and analyses
without restriction. Importantly, these data will also provide benchmarked references for diagnostic interpretation
across diverse ancestries, and an analytical framework for future population-scale genomic medicine initiatives.
抽象的
结构变异(SV)是基因组组织,内容和多样性的主要驱动力。在过去的十年中,
许多研究表明,SV对神经精神疾病的遗传结构的重要性
(NPD),例如自闭症谱系障碍(ASD),精神分裂症,双相情感障碍和ADHD。这些研究
已经提出了SV对个体疾病的重大影响,以及跨越共享的遗传病因
NPD频谱。然而,尽管存在这种病因,但大多数NPD中的SV研究都集中在
使用微阵列技术的大规范拷贝数变化(CNV)。人口遗传研究有
与这些工作相似,因为大多数SV数据库都由基于数组的CNV数据主导。几个全基因组
现在已经创建了测序(WGS)参考来表征SV,例如1000个基因组项目
在约2500个人中。这些数据集对人类的遗传研究非常宝贵。但是,他们有
捕获了一小部分SV,WGS可访问,并且在祖先多样性方面受到限制,主要是由于
技术,算法和样本量的局限性。这些挑战也降低了这些挑战的价值
参考诊断筛查中SV的临床解释。这项研究将提供规范和
复杂的SVS在1000个基因组项目中的比例> 50倍,通过系统地分析聚合
基因组聚集联盟(GNOMAD)中的WGS数据集。我们将整合我们完成的原型
在普遍可访问的基因组分析工具包中基于云的SV发现的可扩展工具(gatk--
SV;目标1)。 GATK-SV将提供一个开源框架,该框架可以捕获一系列规范和
复杂的SV,在短阅读WGS的功能中,并将包括一个可扩展性的模块
WGS。我们将在gnomad的不同祖先的聚集中应用这些方法,WGS扩展
我们的外显着聚集财团(EXAC)(AIM 2)。 GNOMAD数据集目前包括85,000 WGS
样本,通过AIM 2的结论,该资源将超过150,000个基因组。我们将使用此参考
为了定义基因组区域的重电,并提供了SV约束的系统测量方法。然后我们会
在包括ASD,包括ASD的个体中,对60,000个基因组进行WGS关联分析
精神分裂症和躁郁症病例(AIM 3)。结合GNOMAD SV地图和集成
在基于微阵列的CNV聚合中,这些分析将有充分的动力来量化相对风险
通过SV在每种单个疾病中,并探索整个NPD频谱中的共同风险。每个目标都将适用
创新的方法来生产新产品,我们将自由分发这些工具,地图和分析
无限制。重要的是,这些数据还将为诊断解释提供基准的参考
跨越各种祖先,也是未来人口规模基因组医学计划的分析框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E TALKOWSKI其他文献
MICHAEL E TALKOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E TALKOWSKI', 18)}}的其他基金
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
9809586 - 财政年份:2019
- 资助金额:
$ 79.35万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10414009 - 财政年份:2019
- 资助金额:
$ 79.35万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
10004116 - 财政年份:2019
- 资助金额:
$ 79.35万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10224767 - 财政年份:2018
- 资助金额:
$ 79.35万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
9982392 - 财政年份:2018
- 资助金额:
$ 79.35万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10737203 - 财政年份:2018
- 资助金额:
$ 79.35万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:
10661996 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 79.35万 - 项目类别: