Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
基本信息
- 批准号:10414009
- 负责人:
- 金额:$ 78.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-02 至 2023-06-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllelesApacheAttention deficit hyperactivity disorderBasic ScienceBenchmarkingBiological SciencesBiologyBipolar DisorderChromatinClinicalClinical ResearchCodeCommunitiesComplexCopy Number PolymorphismCountryDataData SetDatabasesDetectionDiagnosticDiseaseElementsEtiologyFree WillFreezingFutureGenesGenetic Population StudyGenetic Predisposition to DiseaseGenetic ResearchGenetsGenomeGenomic SegmentGenomic medicineHumanHuman GeneticsHuman GenomeIndividualInheritedInstitutesMapsMeasuresMethodsMicroarray AnalysisModelingMosaicismMutationPhasePopulationReference ValuesRelative RisksRepetitive SequenceResearchResourcesRiskSample SizeSamplingSchizophreniaSiteSourceSpecificityStructureTechnologyTrans-Omics for Precision MedicineUnited States National Institutes of HealthVariantautism spectrum disorderbaseclinical diagnosticscloud basedcohortdiagnostic screeningdisorder riskethnic diversityexomegenetic architecturegenome analysisgenome sequencinggenome-wideinnovationneuropsychiatric disorderneuropsychiatrynovelopen sourceopen source toolprogramsprototypepsychogeneticsrisk sharingtoolweb interfacewhole genome
项目摘要
ABSTRACT
Structural variation (SV) is a major driver of genome organization, content, and diversity. Over the last decade,
many studies have demonstrated the significance of SV to the genetic architecture of neuropsychiatric disorders
(NPDs) such as autism spectrum disorder (ASD), schizophrenia, bipolar disorder, and ADHD. These studies
have suggested a significant impact of SV within individual disorders, as well as shared genetic etiology across
a spectrum of NPDs. However, despite this etiological relevance, most studies of SV in NPDs have focused on
large canonical copy number variation (CNV) using microarray technologies. Population genetic studies have
paralleled these efforts, as most SV databases are dominated by array-based CNV data. Several whole-genome
sequencing (WGS) references have now been created to characterize SV, such as the 1000 Genomes Project
in ~2,500 individuals. These datasets have been invaluable to human genetic research; however, they have
captured a small fraction of SV that is accessible to WGS and are limited in ancestral diversity, primarily due to
limitations in technologies, algorithms, and sample sizes. These challenges have also reduced the value of these
reference for clinical interpretation of SV in diagnostic screening. This study will provide maps of canonical and
complex SVs on a scale >50-fold that of the 1000 Genomes Project by systematically analyzing aggregated
WGS datasets in the genome aggregation consortium (gnomAD). We will integrate our completed prototype of
a scalable tool for cloud-based SV discovery within the universally accessible Genome Analysis Toolkit (GATK-
SV; Aim 1). GATK-SV will provide an open source framework that can capture a spectrum of canonical and
complex SV, within the capabilities of short-read WGS, and will include a module for extensibility to long-read
WGS. We will apply these methods across the aggregation of diverse ancestries in gnomAD, a WGS extension
of our Exome Aggregation Consortium (ExAC) (Aim 2). The gnomAD dataset currently includes 85,000 WGS
samples, and this resource will exceed 150,000 genomes by the conclusion of Aim 2. We will use this reference
to define genomic regions recalcitrant to SV and provide systematic measures of SV constraint. We will then
perform WGS association analyses across >60,000 genomes in individuals with NPDs, including ASD,
schizophrenia, and bipolar disorder cases (Aim 3). In combination with the gnomAD SV maps and the integration
of microarray-based CNV aggregation, these analyses will be well powered to quantify the relative risk conferred
by SV in each individual disorder, and to explore shared risk across the NPD spectrum. Each aim will apply
innovative approaches to yield novel products, and we will freely distribute these tools, maps, and analyses
without restriction. Importantly, these data will also provide benchmarked references for diagnostic interpretation
across diverse ancestries, and an analytical framework for future population-scale genomic medicine initiatives.
摘要
结构变异(SV)是基因组组织、内容和多样性的主要驱动力。在过去十年里,
许多研究表明,SV在神经精神障碍的遗传结构中具有重要意义
(NPDS),如自闭症谱系障碍(ASD)、精神分裂症、双相情感障碍和ADHD。这些研究
已经提出了SV在个体疾病中的重大影响,以及共同的遗传病因
一系列NPD。然而,尽管有这种病因学上的相关性,但大多数关于NPD中SV的研究都集中在
使用微阵列技术的大规范拷贝数变异(CNV)。人口遗传学研究已经
与这些工作并行,因为大多数SV数据库由基于阵列的CNV数据主导。几个全基因组
现在已经创建了测序(WGS)参考来描述SV,例如1000基因组计划
在大约2,500个人中。这些数据集对人类基因研究来说是无价的;然而,它们
捕获了一小部分可由WGS访问的SV,其祖先多样性有限,主要是由于
在技术、算法和样本量方面的限制。这些挑战也降低了这些
为诊断筛查中SV的临床解释提供参考。这项研究将提供规范和
通过系统分析聚集体的规模是1000基因组计划的50倍的复杂SVS
基因组聚合联盟(GnomAD)中的WGS数据集。我们将集成我们完成的原型
全球可访问的基因组分析工具包(GATK-)中的可扩展工具,用于基于云的SV发现
Sv;目标1)。GATK-SV将提供一个开源框架,它可以捕获一系列规范和
复杂的服务,在短读WGS的能力内,并将包括一个可扩展到长读的模块
WGS。我们将在gnomAD(一个WGS扩展)中将这些方法应用于不同祖先的聚合
我们的Exome聚合联盟(ExAC)(目标2)。GnomAD数据集目前包括85,000个WG
样本,到目标2结束时,这个资源将超过150,000个基因组。我们将使用这个参考
确定对SV有抵抗力的基因组区域,并提供系统的SV限制措施。到时候我们会的
对包括ASD在内的NPD患者的60,000个基因组执行WGS关联分析。
精神分裂症和双相情感障碍病例(目标3)。结合gnomAD SV地图和集成
对于基于微阵列的CNV聚集,这些分析将被很好地量化所赋予的相对风险
由SV在每个个体疾病中进行,并探索NPD范围内的共同风险。每个目标都将适用
创新的方法来生产新的产品,我们将免费分发这些工具、地图和分析
没有任何限制。重要的是,这些数据还将为诊断解释提供基准参考
跨越不同的祖先,并为未来人口规模的基因组医学倡议建立一个分析框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E TALKOWSKI其他文献
MICHAEL E TALKOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E TALKOWSKI', 18)}}的其他基金
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10162661 - 财政年份:2019
- 资助金额:
$ 78.52万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
9809586 - 财政年份:2019
- 资助金额:
$ 78.52万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
10004116 - 财政年份:2019
- 资助金额:
$ 78.52万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10224767 - 财政年份:2018
- 资助金额:
$ 78.52万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
9982392 - 财政年份:2018
- 资助金额:
$ 78.52万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10737203 - 财政年份:2018
- 资助金额:
$ 78.52万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 78.52万 - 项目类别:
Continuing Grant














{{item.name}}会员




