The Genomic Architecture of Pregnancy Loss
流产的基因组结构
基本信息
- 批准号:10705318
- 负责人:
- 金额:$ 83.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureBayesian ModelingBioinformaticsCRISPR screenCRISPR/Cas technologyChildChromosome abnormalityClassification SchemeClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeComparative Genomic AnalysisComplexComputer ModelsConceptionsCouplesDataData AggregationData SetDevelopmentDiseaseEmbryoEmerging TechnologiesEngineeringEnhancersEtiologyFamilyFundingFutureGenerationsGenesGeneticGenetic Predisposition to DiseaseGenomeGenome engineeringGenomic SegmentGenomicsGestational AgeGoalsHeterozygoteHumanHuman DevelopmentHuman GenomeIndividualInstitutionIntellectual functioning disabilityInternationalJointsLifeLive BirthManualsMaternal-fetal medicineMeasuresMediatingMedical GeneticsMendelian disorderMethodsModelingMolecularMusMutationNeurodevelopmental DisorderPathogenicityPenetrancePhenotypePoint MutationPopulationPregnancyPregnancy lossProcessPropertyProteinsRecurrenceRelative RisksResolutionRisk EstimateSamplingSiteSourceStatistical ModelsStructural defectTailTechniquesTechnologyUntranslated RNAValidationVariantWorkaggregation databasealgorithm developmentanalytical methodautism spectrum disordercase controlclinical databaseclinically relevantcloud basedcohortdata integrationde novo mutationdevelopmental diseasedosageearly pregnancy lossfetalfetal lossgene discoverygenetic architecturegenome editinggenome sequencinggenomic datagenomic predictorsgenomic variationimprovedin vivoin vivo Modelinnovationmouse genomenon-geneticnovelpleiotropismpromoterprospectivescreeningstillbirthtechnology developmenttransmission process
项目摘要
ABSTRACT
Pregnancy loss (PL) occurs in approximately 15% of clinically recognized pregnancies and only 30% of
conceptions result in a live birth, yet little is known about genomic predictors of PL beyond large chromosomal
aberrations. While it is likely that non-genetic etiologies and common variants underlie a component of PLs, we
propose here to disentangle the mutational spectrum of rare and de novo variation contributing to non-viability.
We overcome traditional barriers to genomic studies of PL, namely insufficient power, low-resolution
technologies, and reductive statistical approaches, by establishing a Fetal Genomics Consortium (FGC)
comprised of 21 international sites. Our team includes leading expertise in maternal-fetal medicine, statistical
genetics, genomics, technology and algorithm development, structural variation, and in vivo CRISPR modeling.
We will apply high-throughput genome sequencing (WGS) at the Broad Institute and external datasets as a
frontline strategy and perform analyses of at least 2,500 PL trios. Our cohort will include the PL continuum,
including at least 2,000 fetal demise trios from 20-42 weeks gestation and 500 recurrent pregnancy loss trios in
couples with at least two previous losses at any gestational age. We will combine, process, analyze, and interpret
pathogenic variation and return clinically relevant results to families, while prioritizing a subset of unsolved cases
with complex fetal anomalies for long-read WGS and de novo assembly (AIM 1). We will then explore novel
genomic predictors of PL and compare the genomic architectures of the developmental continuum from early PL
to later onset developmental disorders (AIM 2). These studies will apply novel analytic methods to integrate all
classes of genomic variation, mutation rates, relative risk estimates and measures of evolutionary constraint for
each gene in the genome to interrogate the ‘intolerome’. To improve discovery power in PL, we will leverage
massive population-scale datasets (>2M genomes), and the aggregation of >200,000 cases from ongoing
developmental disorder studies. These cohorts are accessible and already being analyzed by our FGC groups,
including the Broad Institute Center for Mendelian Genetics, Gabriella Miller Kids First sequencing center,
gnomAD, All of US, the Undiagnosed Disease Network, and autism and neurodevelopmental disorder consortia
studies. AIM 2 will integrate computational models of coding and noncoding constraint into a statistical framework
to identify novel genes and loci associated with PL, and prioritize variants for in vivo CRISPR lethality screening
in mouse embryos (AIM 3). This FGC proposal is thus poised to transform our understanding of the genomic
predictors of PL. We will evaluate meticulously phenotyped PL families with emerging technologies, population-
scale datasets and developmental disorder cohorts using uniform bioinformatic and statistical approaches. Our
analyses will deliver clinically meaningful results to current families, and our functional modeling will inform
interpretation of variation incompatible with human development for future PL families.
抽象的
大约 15% 的临床认可妊娠发生妊娠丢失 (PL),而只有 30% 的妊娠发生妊娠丢失 (PL)。
受孕会导致活产,但除了大染色体外,对 PL 的基因组预测因素知之甚少
像差。虽然非遗传病因和常见变异很可能是 PL 的组成部分,但我们
在此建议理清导致非生存能力的罕见变异和从头变异的突变谱。
我们克服了 PL 基因组研究的传统障碍,即功率不足、分辨率低
技术和还原统计方法,通过建立胎儿基因组学联盟 (FGC)
由 21 个国际站点组成。我们的团队包括母胎医学、统计方面的领先专业知识
遗传学、基因组学、技术和算法开发、结构变异和体内 CRISPR 建模。
我们将应用布罗德研究所的高通量基因组测序(WGS)和外部数据集作为
一线战略并对至少 2,500 个 PL 三人组进行分析。我们的队列将包括 PL 连续体,
包括至少 2,000 名妊娠 20-42 周的胎儿死亡三人组和 500 名复发性妊娠丢失三人组
在任何胎龄期间至少有过两次流产的夫妇。我们将结合、处理、分析和解释
致病变异并向家庭返回临床相关结果,同时优先考虑未解决病例的子集
具有复杂的胎儿异常,可进行长读全基因组测序和从头组装 (AIM 1)。然后我们将探索小说
PL 的基因组预测因子并比较早期 PL 发育连续体的基因组结构
迟发型发育障碍 (AIM 2)。这些研究将应用新颖的分析方法来整合所有
基因组变异类别、突变率、相对风险估计和进化约束措施
基因组中的每个基因来询问“intolerome”。为了提高 PL 的发现能力,我们将利用
大规模人口规模数据集(>2M 基因组),以及正在进行的超过 200,000 个病例的汇总
发育障碍研究。这些队列是可以访问的,并且已经由我们的 FGC 小组进行了分析,
包括 Broad Institute 孟德尔遗传学中心、Gabriella Miller Kids First 测序中心、
gnomAD、全美、未确诊疾病网络以及自闭症和神经发育障碍联盟
研究。 AIM 2 将编码和非编码约束的计算模型集成到统计框架中
识别与 PL 相关的新基因和基因座,并优先考虑体内 CRISPR 致死率筛选的变体
在小鼠胚胎中(AIM 3)。因此,这项 FGC 提案有望改变我们对基因组的理解
PL 的预测因子。我们将利用新兴技术仔细评估表型 PL 家族,
使用统一的生物信息学和统计方法扩展数据集和发育障碍队列。我们的
分析将为当前家庭提供具有临床意义的结果,我们的功能模型将提供信息
对未来 PL 家庭的与人类发展不相容的变异的解释。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Resolution and Noninvasive Fetal Exome Screening.
高分辨率和无创胎儿外显子组筛查。
- DOI:10.1056/nejmc2216144
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Brand,Harrison;Whelan,ChristopherW;Duyzend,Michael;Lemanski,John;Salani,Monica;Hao,StephanieP;Wong,Isaac;Valkanas,Elise;Cusick,Caroline;Genetti,Casie;Dobson,Lori;Studwell,Courtney;Gianforcaro,Kathleen;Wilkins-Haug,Louise;Guse
- 通讯作者:Guse
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E TALKOWSKI其他文献
MICHAEL E TALKOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E TALKOWSKI', 18)}}的其他基金
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10162661 - 财政年份:2019
- 资助金额:
$ 83.9万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
9809586 - 财政年份:2019
- 资助金额:
$ 83.9万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10414009 - 财政年份:2019
- 资助金额:
$ 83.9万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
10004116 - 财政年份:2019
- 资助金额:
$ 83.9万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10224767 - 财政年份:2018
- 资助金额:
$ 83.9万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
9982392 - 财政年份:2018
- 资助金额:
$ 83.9万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10737203 - 财政年份:2018
- 资助金额:
$ 83.9万 - 项目类别:
相似海外基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 83.9万 - 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
- 批准号:
10730714 - 财政年份:2023
- 资助金额:
$ 83.9万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2022
- 资助金额:
$ 83.9万 - 项目类别:
Discovery Grants Program - Individual
Bayesian modeling on ethical consumption and its empirical application for behavior modification
道德消费的贝叶斯模型及其在行为矫正中的实证应用
- 批准号:
21K18559 - 财政年份:2021
- 资助金额:
$ 83.9万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10684720 - 财政年份:2021
- 资助金额:
$ 83.9万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2021
- 资助金额:
$ 83.9万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Modeling of Mass-Spec Proteomics Data to Advance Studies of the Genetic Regulation of Proteins
质谱蛋白质组数据的贝叶斯建模推进蛋白质遗传调控的研究
- 批准号:
10391171 - 财政年份:2021
- 资助金额:
$ 83.9万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10490301 - 财政年份:2021
- 资助金额:
$ 83.9万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 83.9万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2020
- 资助金额:
$ 83.9万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




