Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
基本信息
- 批准号:10004116
- 负责人:
- 金额:$ 16.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsBiologicalCategoriesChildCodeCollaborationsComplexComputing MethodologiesCopy Number PolymorphismCounselingDNA Insertion ElementsDataData AggregationData SetDatabasesDetectionDevelopmentDiseaseDisease modelEmbryonic DevelopmentEtiologyEuropeanEventFamilyGenesGeneticGenetic Predisposition to DiseaseGenetic RiskGenetsGenomeHeritabilityHuman DevelopmentHuman GenomeJointsMapsMediatingMethodsModelingMutationNeurodevelopmental DisorderNewborn InfantPathogenicityPathway interactionsPatternPoint MutationPopulationPopulation ControlProteinsPublic HealthResearch DesignResourcesRiskScienceScoring MethodSingle Nucleotide PolymorphismStatistical Data InterpretationStatistical MethodsStatistical ModelsStructural Congenital AnomaliesStructureSynaptic TransmissionTestingTranscriptional RegulationUntranslated RNAValidationVariantautism spectrum disordercase findingchromatin modificationchromothripsiscloud basedcohortcomputational pipelinescomputerized toolsdata resourcede novo mutationexomegenetic architecturegenome sequencinggenomic toolsgenomic variationimprovedinnovationinsertion/deletion mutationinsightlarge scale datanovelprenatal testingprogramstherapeutic developmenttoolvariant detectionwhole genome
项目摘要
ABSTRACT
Structural birth defects (SBDs) impact millions of children in the US and around the world every
year. The Gabriella Miller Kids First (GMKF) program and other initiatives have committed
significant resources toward understanding the genetic basis of these conditions, yet the
genetic etiology and underlying pathogenic mechanisms remain unknown for most children that
present with SBDs. This application will focus on two classes of genomic variation that likely
contribute to this unexplained etiology in SBDs: structural variation (SV) and noncoding
regulatory variation. Broadly defined as variants >50bp in size, SVs have been discovered to be
far more prevalent and diverse in each human genome than previously appreciated. In this
proposal, we will use our recently developed SV detection algorithms from whole-genome
sequencing across GMKF SBD cohorts, and compare these findings to large population-scale
datasets in the genome aggregation database (gnomAD-SV). In addition to variant detection
and characterization, we will pursue disease association analyses in SBD cohorts. Given that
most new (de novo) mutations that occur in children reside outside of the coding sequence of
genes, it is imperative that models of disease association account for both coding and
noncoding variation. Here, we will leverage recently developed analytic frameworks of
‘category-wide association study’ (CWAS) and de novo risk score approaches to perform
association tests across all coding and noncoding single nucleotide variants, indels and
structural variants in GMKF. Finally, we will integrate genome and exome findings from cases
with neurodevelopmental disorders (NDD) to investigate commonalities in genes and pathways
associated with SBDs and NDDs. Taken together, we expect these analyses to develop a
comprehensive resource to interrogate the genetic landscape of SV and noncoding associations
across SBDs in GMKF families and population controls.
摘要
结构性出生缺陷(SBD)每年影响美国和世界各地数百万儿童,
年加布里埃拉米勒儿童第一(GMKF)计划和其他举措已承诺
重要的资源,以了解这些条件的遗传基础,然而,
对于大多数儿童,遗传病因学和潜在的致病机制仍然未知,
与SBD一起出现。该应用程序将集中在两类基因组变异,
结构变异(SV)和非编码突变是导致SBD的原因之一。
监管变化。广义上定义为大小> 50 bp的变体,已经发现SV是
在每个人类基因组中的普遍性和多样性远远超过以前的认识。在这
建议,我们将使用我们最近开发的SV检测算法从全基因组
在GMKF SBD队列中进行测序,并将这些结果与大规模人群进行比较
基因组聚合数据库(gnomAD-SV)中的数据集。除了变异检测
和表征,我们将在SBD队列中进行疾病相关性分析。鉴于
在儿童中发生的大多数新的(从头)突变位于编码序列之外,
基因,疾病关联模型必须同时考虑编码和
非编码变异在这里,我们将利用最近开发的分析框架,
“全类别关联研究”(CWAS)和从头风险评分方法进行
所有编码和非编码单核苷酸变体、插入缺失和
GMKF中的结构变体。最后,我们将整合病例的基因组和外显子组发现
神经发育障碍(NDD)研究基因和途径的共性
与SBD和NDD相关。综合起来,我们希望这些分析能够发展出一种
询问SV和非编码关联的遗传景观的综合资源
在GMKF家族和人群对照中的SBD之间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E TALKOWSKI其他文献
MICHAEL E TALKOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E TALKOWSKI', 18)}}的其他基金
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10162661 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
9809586 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10414009 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10224767 - 财政年份:2018
- 资助金额:
$ 16.8万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
9982392 - 财政年份:2018
- 资助金额:
$ 16.8万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10737203 - 财政年份:2018
- 资助金额:
$ 16.8万 - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
$ 16.8万 - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




