Creating an artificial intelligence therapy-to-data feedback loop for child developmental healthcare

为儿童发育保健创建人工智能治疗到数据反馈循环

基本信息

  • 批准号:
    10164858
  • 负责人:
  • 金额:
    $ 64.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary There is a sharp and increasing imbalance between the number of children with autism in need of care and the availability of specialists certified to treat the disorder in its multi-faceted manifestations. The autism community faces a dual clinical challenge: how to direct scarce specialist resources to service the diverse array of phenomes and how to monitor and validate best practices in treatment. Clinicians must now look to solutions that scale in a decentralized fashion, placing data capture, remote monitoring, and therapy increasingly into the hands of families. Using artificial intelligence (AI) and large amounts of labeled human emotion computer vision data, we have developed a solution for automatic facial expression recognition that runs on Google Glasses and Android smartphones to deliver real time social cues to individuals with autism in the child’s natural environment. We hypothesize that this informatic system can provide real-time therapy in a way that scales to meet the demand of the growing population of autism families, including underserved minorities, while growing data that can be used to measure progress over time and in the development of novel AI. Our first aim will focus on the development of a deep learning model that enables dynamic emotion recognition in the real world, and on domain adaptation procedures that enable minimal manual labeling to personalize the model for optimal accuracy on the individuals with whom the child will interact most regularly at home. Our second aim will focus on the human computer interface, namely the design of the user experience with the Android application that controls the sessions run on the Google Glass wearable. We will work our clinical colleagues and with groups of autism families to develop and enhance a set of games and activity modes that create social engagements ideal for emotion therapy, including an emotion capture and a charades game. The third aim will test our central hypothesis that the Glass system can create a therapy-to-data feedback loop that delivers clinical care while growing data for measurement and model development. We will work with up to 200 children ages 4-8 who have recent autism diagnoses and do not have access to standard behavioral therapy. We will build a community of autism families through crowdsourcing techniques, befitting the mobile paradigm embodied by our work, and through close collaboration with behavioral therapy providers, the autism outreach organization Autism Speaks, and the digital healthcare company, Cognoa. The families will work with us on design and refinement of our “Superpower Glass” system for fit, engagement, and function of use for both therapy and data capture. Importantly, we will send units home with families to use the device for at least 3 twenty-minute sessions per week for a minimum of 6 weeks. This remote period will generate a massive database to quantify overall social learning, emotion comprehension, eye contact, and sustained social acuity. In all, our work program will show that mobile wearable AI can bring the social learning process out of the clinic and into the real world for faster and more adaptive intervention.
项目摘要 需要护理的自闭症儿童数量与需要护理的自闭症儿童数量之间存在急剧且日益严重的不平衡 是否有经认证的专家来治疗这种多方面表现的疾病。自闭症社区 面临双重临床挑战:如何引导稀缺的专家资源为多样化的 表型组以及如何监测和验证治疗中的最佳做法。临床医生现在必须寻找解决方案 以分散的方式扩展,将数据捕获、远程监控和治疗越来越多地放在 家庭之手。使用人工智能(AI)和大量标记的人类情感计算机视觉 数据,我们已经开发了一种在谷歌眼镜上运行的自动面部表情识别解决方案 和Android智能手机,向儿童自然状态下的自闭症患者提供实时社交提示 环境。我们假设这个信息系统可以提供实时治疗,这种方式可以扩展到 满足日益增长的自闭症家庭人口的需求,包括未得到充分服务的少数群体 可以用来衡量随着时间的推移和在新型人工智能发展中取得的进展的数据。 我们的第一个目标将集中在开发一种深度学习模型,该模型能够实现动态情感识别 在现实世界中,以及允许最小限度地手动标记以个性化的领域适配过程 对于孩子在家中最经常与之互动的个人,建立最佳准确性的模型。我们的 第二个目标将集中在人机界面上,即设计用户体验与 在谷歌眼镜可穿戴设备上运行的控制会话的Android应用程序。我们会让我们的临床 与同事和自闭症家庭团体一起开发和增强一套游戏和活动模式, 创建情绪治疗的理想社交活动,包括情绪捕捉和字谜游戏。这个 第三个目标将测试我们的中心假设,即眼镜系统可以创建一个治疗到数据反馈循环, 提供临床护理,同时为测量和模型开发提供越来越多的数据。 我们将与多达200名4-8岁的儿童合作,他们最近被诊断为自闭症,但无法接触到 标准行为疗法。我们将通过众包技术建立一个自闭症家庭社区, 符合我们工作中体现的移动范式,并通过与行为疗法的密切合作 提供者、自闭症外展组织自闭症演讲和数字医疗保健公司Cognoa。 这些家庭将与我们合作,设计和改进我们的超强玻璃系统,以适应、接洽、 以及治疗和数据捕获的使用功能。重要的是,我们将把单位和家庭一起送回家使用 该设备每周至少进行3次20分钟的治疗,持续至少6周。这段遥远的时期将 生成一个庞大的数据库,以量化整体社交学习、情感理解、眼神交流和 持续的社交敏锐性。总而言之,我们的工作计划将展示移动可穿戴人工智能可以带来社交学习 过程走出临床,进入真实世界,以获得更快和更适应的干预。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Paul Wall其他文献

Dennis Paul Wall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Paul Wall', 18)}}的其他基金

An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    $ 64.94万
  • 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
  • 批准号:
    10596139
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
  • 批准号:
    10443542
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
Creating an artificial intelligence therapy-to-data feedback loop for child developmental healthcare
为儿童发育保健创建人工智能治疗到数据反馈循环
  • 批准号:
    10401857
  • 财政年份:
    2019
  • 资助金额:
    $ 64.94万
  • 项目类别:
Evaluation of machine learning to mobilize detection and therapy of developmental delay in children
机器学习的评估以动员儿童发育迟缓的检测和治疗
  • 批准号:
    9524706
  • 财政年份:
    2017
  • 资助金额:
    $ 64.94万
  • 项目类别:
Evaluation of machine learning to mobilize detection and therapy of developmental delay in children
机器学习的评估以动员儿童发育迟缓的检测和治疗
  • 批准号:
    9297669
  • 财政年份:
    2017
  • 资助金额:
    $ 64.94万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    8208082
  • 财政年份:
    2010
  • 资助金额:
    $ 64.94万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    8402638
  • 财政年份:
    2010
  • 资助金额:
    $ 64.94万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    7900665
  • 财政年份:
    2010
  • 资助金额:
    $ 64.94万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    8527985
  • 财政年份:
    2010
  • 资助金额:
    $ 64.94万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 64.94万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 64.94万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 64.94万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 64.94万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 64.94万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了