Characterizing the genetic systems of autism through multi-disease analysis

通过多种疾病分析表征自闭症遗传系统

基本信息

  • 批准号:
    8527985
  • 负责人:
  • 金额:
    $ 12.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-05 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Autism is a complex disorder with a wide spectrum of phenotypes. Although it is clearly heritable, the molecular agents responsible remain elusive. More than 100 genes have been tied to Autism, each of which is involved in numerous different biological processes and in a variety of different molecular interactions. No single researcher can completely grasp the complexity of this Autism gene space, and perhaps for this reason, few genes have emerged as promising markers or targets for therapeutic intervention. Our plan is provide a way to grasp this complexity by shifting the focus from single genes to the entire genetic system of Autism. Thus, we will build the complete network of molecular interactions for all Autism candidate genes using bioinformatic methods that integrate multiple sources of genomic and bibliomic information. While this network will be a powerful enabler of new discoveries in Autism, it will not be enough to fully grasp the genetic underpinnings of the various behaviors indicative of the disorder. Hope for that however lies in the behavioral similarities between Autism and numerous other neurological disorders. These behavioral similarities suggest that there are common molecular mechanisms that if understood could help provide a clearer genotype-phenotype map of the Autism spectrum. Our plan is to capitalize on these similarities by conducting a comprehensive comparative analysis of the Autism network with the networks of more than 400 neurological disorders. Our work will result in a systems level view of Autism and its most similar neurological disorders that will not only help to see emergent trends that clarify the genetic basis of the spectrum, but will also help to prioritize known Autism candidates and reveal new candidates worthy of investigation. All of our work will be made freely accessible in a web-based tool that allows complete navigation through the Autism network and the networks of all other related neurological disorders. Wall & Kohane Abstract 1 PUBLIC HEALTH RELEVANCE: The genetic component of Autism remains unknown, but current research indicates that it is most likely the result of combined effects of many different genetic variants in possibly hundreds of genes. Grasping the complexity of this genetic land scape is a significant challenge for Autism researchers, and requires sophisticated bioinformatic solutions that are readily accessible to all members of the research community. We propose to build a web-based system called Autworks that is at once an up-to-date central clearing house for all information relevant to the genetic component of Autism and a powerful research tool that allows researchers to view the genetic component of Autism as a network and in light of research results on related neurological disorders.
描述(由申请人提供):自闭症是一种复杂的疾病,具有广泛的表型。 虽然它显然是可遗传的,但负责的分子因子仍然难以捉摸。 超过100个基因与自闭症有关,每个基因都涉及许多不同的生物过程和各种不同的分子相互作用。 没有一个研究人员能够完全掌握自闭症基因空间的复杂性,也许正是因为这个原因,很少有基因成为有希望的标记或治疗干预的靶点。 我们的计划是通过将焦点从单个基因转移到自闭症的整个遗传系统来提供一种掌握这种复杂性的方法。 因此,我们将建立完整的网络分子相互作用的所有自闭症候选基因使用生物信息学方法,整合多个来源的基因组和书目信息。 虽然这个网络将成为自闭症新发现的有力推动者,但它不足以完全掌握指示这种疾病的各种行为的遗传基础。 然而,希望在于自闭症和许多其他神经系统疾病之间的行为相似性。 这些行为相似性表明,如果理解这些共同的分子机制,可以帮助提供更清晰的自闭症谱系的基因型-表型图。 我们的计划是利用这些相似性,对自闭症网络与400多种神经系统疾病的网络进行全面的比较分析。 我们的工作将导致自闭症及其最相似的神经系统疾病的系统水平视图,这不仅有助于看到澄清谱系遗传基础的新兴趋势,而且还有助于优先考虑已知的自闭症候选人,并揭示值得研究的新候选人。 我们所有的工作都将在一个基于网络的工具中免费访问,该工具允许通过自闭症网络和所有其他相关神经系统疾病的网络进行完整的导航。 Wall & Kohane摘要1 公共卫生相关性:自闭症的遗传成分仍然未知,但目前的研究表明,它很可能是数百个基因中许多不同遗传变异的综合影响的结果。 掌握这种遗传景观的复杂性对自闭症研究人员来说是一个重大挑战,需要复杂的生物信息学解决方案,研究社区的所有成员都可以随时访问。 我们建议建立一个名为Autworks的基于网络的系统,该系统既是一个最新的中央信息交换所,用于与自闭症遗传成分相关的所有信息,也是一个强大的研究工具,使研究人员能够将自闭症的遗传成分视为一个网络,并根据相关神经系统疾病的研究结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Paul Wall其他文献

Dennis Paul Wall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Paul Wall', 18)}}的其他基金

An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
  • 批准号:
    10596139
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
  • 批准号:
    10443542
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
Creating an artificial intelligence therapy-to-data feedback loop for child developmental healthcare
为儿童发育保健创建人工智能治疗到数据反馈循环
  • 批准号:
    10164858
  • 财政年份:
    2019
  • 资助金额:
    $ 12.03万
  • 项目类别:
Creating an artificial intelligence therapy-to-data feedback loop for child developmental healthcare
为儿童发育保健创建人工智能治疗到数据反馈循环
  • 批准号:
    10401857
  • 财政年份:
    2019
  • 资助金额:
    $ 12.03万
  • 项目类别:
Evaluation of machine learning to mobilize detection and therapy of developmental delay in children
机器学习的评估以动员儿童发育迟缓的检测和治疗
  • 批准号:
    9524706
  • 财政年份:
    2017
  • 资助金额:
    $ 12.03万
  • 项目类别:
Evaluation of machine learning to mobilize detection and therapy of developmental delay in children
机器学习的评估以动员儿童发育迟缓的检测和治疗
  • 批准号:
    9297669
  • 财政年份:
    2017
  • 资助金额:
    $ 12.03万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    8208082
  • 财政年份:
    2010
  • 资助金额:
    $ 12.03万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    8402638
  • 财政年份:
    2010
  • 资助金额:
    $ 12.03万
  • 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
  • 批准号:
    7900665
  • 财政年份:
    2010
  • 资助金额:
    $ 12.03万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了