Evaluation of machine learning to mobilize detection and therapy of developmental delay in children
机器学习的评估以动员儿童发育迟缓的检测和治疗
基本信息
- 批准号:9297669
- 负责人:
- 金额:$ 19.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-10 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAndroidAutistic DisorderBehaviorBehavior TherapyBehavioralBiomedical EngineeringCaregiversCaringChildClassificationClinicClinicalComplementCuesDataData SetDetectionDevelopmentDevelopmental Delay DisordersDevelopmental Therapeutics ProgramDevicesDiagnosisDiagnosticEarly InterventionEducational process of instructingEmotionsEmployee StrikesEnvironmentEvaluationExhibitsEyeFaceFacial ExpressionFacial Expression RecognitionFamilyFeedbackFundingFutureGlassGoalsGoldHealth TechnologyHome environmentIndividualInterviewLiquid substanceLongitudinal StudiesMachine LearningMeasurableMeasurementMeasuresMethodsOperating SystemParentsParticipantPatientsPediatric HospitalsPhenotypeProcessProviderRecordsResearchResearch ProposalsRiskRisk AssessmentRunningScheduleSelf-DirectionSensitivity and SpecificitySeveritiesSpecificitySpeedSystemTestingTherapeuticTherapeutic InterventionTimeValidationWorkbehavior measurementcare deliveryclinical caredata archivedata miningdesigndigitalexperimental studyhandheld equipmenthuman-in-the-loopimprovedinnovationinstrumentintervention programpersonalized carepersonalized medicineprogramsprototypesocialsocial learningsocial skillsstemtooltrial design
项目摘要
Project Summary
Access to diagnosis of autism and to invaluable early interventional therapy is severely hampered by the
imbalance between the number of children needing care and the inadequate number of clinical practitioners
who can deliver that care. This numerical imbalance is unlikely to change in the near future, and therefore
there is an urgent need and an exciting opportunity to innovate new methods of care delivery that can
appropriately empower caregivers of children at risk for or with a diagnosis of autism, and that capitalize on
mobile tools and wearable devices. Using machine learning and large-scale data mining, we have built a
mobile system to quantify and track the severity of autism that takes only minutes of a caregiver’s time and that
has promise for repeat use at home due to its speed, accuracy and mobility. We have concomitantly developed
a machine-learning system for automatic facial expression recognition that runs on Google Glass and delivers
real time social cues to individuals with autism in that child’s natural environment. Our goal in this research
program is to work with our clinical colleagues at Stanford’s Autism Center to test and refine these
complementary machine-learning systems for accuracy and optimal use by families and their child with autism
from their natural environments. We will then combine the two systems in a multi-month longitudinal trial
designed to harness our mobilized machine learning tool to quantitatively measure the efficacy of our Autism
Glasses as a therapeutic assistant that functions in real time and within the child’s natural environment. Our
proposed experiments with at least 40 subjects at risk for developmental delay promise to demonstrate how to
leverage digital health technologies to improve, mobilize and quicken the detection and treatment of autism.
The work also will result in a new and unique dataset that validates the ability to bring the social learning
process outside of the clinic and into the real world, leading to a faster, more fluid way for children with autism
to gain social skills. We also expect our work to show how measurable indicators of behavioral improvement
during therapy will facilitate the process of tracking progress on an increasingly more granular scale, and
hopefully set the stage for more effective, precise and personalized treatment.
项目摘要
自闭症的诊断和宝贵的早期介入治疗严重受阻于
需要护理的儿童人数和临床医生人数不足之间的不平衡
谁能提供这样的照顾。这种数字失衡在不久的将来不太可能改变,因此
迫切需要和令人兴奋的机会是创新提供护理的新方法,这种方法可以
适当地授权有自闭症风险或诊断为自闭症儿童的照顾者,并利用这一点
移动工具和可穿戴设备。利用机器学习和大规模数据挖掘,我们已经建立了一个
移动系统,量化和跟踪自闭症的严重程度,只需照顾者几分钟的时间,而且
由于其速度、准确性和机动性,有望在家中重复使用。我们同时发展了
一个用于自动面部表情识别的机器学习系统,运行在谷歌眼镜上,并提供
针对儿童自然环境中的自闭症患者的实时社交提示。我们这项研究的目标是
计划是与我们在斯坦福大学自闭症中心的临床同事合作,测试和完善这些
为家庭及其自闭症儿童提供准确和最佳使用的互补性机器学习系统
从他们的自然环境中。然后,我们将在几个月的纵向试验中将这两个系统结合起来
旨在利用我们的移动机器学习工具来定量衡量自闭症的疗效
眼镜作为一种治疗辅助工具,在儿童的自然环境中实时发挥作用。我们的
对至少40名有发育迟缓风险的受试者进行的拟议实验承诺展示如何
利用数字健康技术改进、动员和加快自闭症的检测和治疗。
这项工作还将产生一个新的和独特的数据集,验证带来社交学习的能力
走出诊所,进入真实世界,为自闭症儿童带来了一种更快、更流畅的方式
以获得社交技能。我们还希望我们的工作能显示出行为改善的可衡量指标
在治疗期间,将促进在越来越细粒度的范围内跟踪进展的过程,并且
希望为更有效、更精确和更个性化的治疗奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Paul Wall其他文献
Dennis Paul Wall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Paul Wall', 18)}}的其他基金
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
- 批准号:
10596139 - 财政年份:2021
- 资助金额:
$ 19.63万 - 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
- 批准号:
10443542 - 财政年份:2021
- 资助金额:
$ 19.63万 - 项目类别:
Creating an artificial intelligence therapy-to-data feedback loop for child developmental healthcare
为儿童发育保健创建人工智能治疗到数据反馈循环
- 批准号:
10164858 - 财政年份:2019
- 资助金额:
$ 19.63万 - 项目类别:
Creating an artificial intelligence therapy-to-data feedback loop for child developmental healthcare
为儿童发育保健创建人工智能治疗到数据反馈循环
- 批准号:
10401857 - 财政年份:2019
- 资助金额:
$ 19.63万 - 项目类别:
Evaluation of machine learning to mobilize detection and therapy of developmental delay in children
机器学习的评估以动员儿童发育迟缓的检测和治疗
- 批准号:
9524706 - 财政年份:2017
- 资助金额:
$ 19.63万 - 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
- 批准号:
8208082 - 财政年份:2010
- 资助金额:
$ 19.63万 - 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
- 批准号:
8402638 - 财政年份:2010
- 资助金额:
$ 19.63万 - 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
- 批准号:
7900665 - 财政年份:2010
- 资助金额:
$ 19.63万 - 项目类别:
Characterizing the genetic systems of autism through multi-disease analysis
通过多种疾病分析表征自闭症遗传系统
- 批准号:
8527985 - 财政年份:2010
- 资助金额:
$ 19.63万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 19.63万 - 项目类别:
Directed Grant














{{item.name}}会员




