Deciphering dynamic signals in control of cell fate decisions
破译控制细胞命运决定的动态信号
基本信息
- 批准号:10165183
- 负责人:
- 金额:$ 39.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:BiologicalCell Culture TechniquesCell DeathCell Fate ControlCell LineCell NucleusCell membraneCellsCellular StructuresClone CellsCoculture TechniquesCodeComputational TechniqueCytoplasmDataData SetDecision MakingDiseaseFrequenciesGenetic TranscriptionGoalsHeterogeneityHybridsImmuneInflammationInflammatoryKnowledgeLeadLearningLigandsLinkMeasurementMediatingModelingMolecularPathway interactionsPlant RootsProcessProliferatingPropertyProteinsReporterRobotSignal PathwaySignal TransductionStimulusStreamStructureSystemTimeTumor Necrosis Factor Receptorcancer cellcomputer frameworkexperimental studyhigh dimensionalityin vivoinformation processinglive cell microscopypredictive testprotein complexquantitative imagingrate of changeresponsetherapy design
项目摘要
PROJECT SUMMARY
In the long-term, our goal is to understand how single cells integrate and process information to make irreversible
decisions such as whether to proliferate, differentiate or die. Inflammatory factors that participate in many normal
and diseased cell fate decisions initiate signals by dynamically re-organizing proteins within the cell. For
example, ligand-bound TNF receptors transiently organize large protein complexes near the plasma membrane,
and these are visible within the cell as discrete punctate structures, whereas other proteins translocate between
cellular compartments such as the cytoplasm and the nucleus. It is an emerging principle that dynamic properties
of molecules within signal transduction circuits provide temporal codes (including rate of change, amplitude,
duration or frequency among others) that are critical to each cell’s response to stimulus. Given that there is
substantial cell-to-cell heterogeneity, even in clonal cell lines, static measurements at fixed time points cannot
reveal the mechanisms of dynamic information processing. We hypothesize that components of the same
signaling pathway are deterministically linked to one another in a single cell, even though there is substantial
heterogeneity between cells. Here, we propose to multiplex expression of live-cell fluorescent reporters for up-
and down-stream components of the same signaling pathway in the same cell, and correlate time-varying signals
from live-cell microscopy data. We will also multiplex expression for reporters between pathways predicted to
have crosstalk. Using a hybrid of quantitative imaging, robot-controlled cell cultures, and computational
techniques, we will extract time-varying data from single cells in a broad range of experimental condition that
reflect what cells may encounter in vivo. We will also compare cellular responses across different inflammatory
factors that share signaling modules and converge on the NF-κB transcriptional system, and we will learn how
immune and cancer cells communicate these signals in co-cultures and higher-dimensional cellular structures.
Using a rich single-cell dataset, we will identify emergent properties of signal transduction, and infer transfer
functions that connect signaling mechanisms and correlate with cell fate. Data from live-cell experiments will be
incorporated into mechanistic models to formalize our understanding of how information is relayed through the
signaling network into transcription, and suggest perturbations to test predicted mechanisms. We anticipate that
increasingly accurate models may lead to non-intuitive strategies to manipulate decisions in single cells. Through
a detailed understanding of how dynamic molecular signals encode, process, and decode information, we have
the potential to understand biological problems that are deeply rooted in disease, and use this knowledge to
rationally design therapies that impact cell fate decisions.
项目摘要
从长远来看,我们的目标是了解单细胞如何整合和处理信息,
决定是否扩散,分化或死亡。炎症因子参与许多正常的
并且患病细胞命运决定通过动态重组细胞内的蛋白质来启动信号。为
例如,配体结合的TNF受体在质膜附近瞬时组织大的蛋白质复合物,
这些蛋白质在细胞内以离散的点状结构可见,而其他蛋白质则在
细胞隔室,例如细胞质和细胞核。这是一个新兴的原则,
信号转导电路内的分子的变化提供时间代码(包括变化率,幅度,
持续时间或频率等),这对每个细胞对刺激的反应至关重要。鉴于有
即使在克隆细胞系中,细胞间的异质性也很大,固定时间点的静态测量不能
揭示动态信息加工的机制。我们假设相同的成分
信号通路在单个细胞中确定性地相互联系,即使存在大量的
细胞间的异质性。在这里,我们提出了活细胞荧光报告基因的多重表达,
和同一细胞中同一信号通路的下游成分,并将时变信号
活细胞显微镜数据。我们还将在预测的途径之间多重表达报告基因,
有crosstalk。使用定量成像,机器人控制的细胞培养和计算机的混合
技术,我们将在广泛的实验条件下从单细胞中提取时变数据,
反映了细胞在体内可能遇到的情况。我们还将比较不同炎症反应的细胞反应,
这些因子共享信号传导模块并汇聚在NF-κB转录系统上,我们将学习如何
免疫细胞和癌细胞在共培养物和更高维度的细胞结构中传递这些信号。
使用丰富的单细胞数据集,我们将确定信号转导的紧急属性,并推断转移
连接信号机制并与细胞命运相关的功能。来自活细胞实验的数据将是
纳入机械模型,以正式确定我们对信息如何通过
信号网络转录,并建议扰动测试预测的机制。我们预计
越来越精确的模型可能导致非直观的策略来操纵单个细胞中的决策。通过
详细了解动态分子信号如何编码,处理和解码信息,我们有
了解深深植根于疾病的生物学问题的潜力,并利用这些知识,
合理设计影响细胞命运决定的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin E. C. Lee其他文献
dNEMO: a tool for quantification of mRNA and punctate structures in time-lapse images of single cells
dNEMO:单细胞延时图像中 mRNA 和点状结构的量化工具
- DOI:
10.1101/855213 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
G. Kowalczyk;J. Agustin Cruz;Yue Guo;Qiuhong Zhang;N. Sauerwald;Robin E. C. Lee - 通讯作者:
Robin E. C. Lee
Robin E. C. Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin E. C. Lee', 18)}}的其他基金
Deciphering dynamic signals in control of cell fate decisions
破译控制细胞命运决定的动态信号
- 批准号:
10469399 - 财政年份:2016
- 资助金额:
$ 39.41万 - 项目类别:
Deciphering dynamic signals in control of cell fate decisions
破译控制细胞命运决定的动态信号
- 批准号:
10656487 - 财政年份:2016
- 资助金额:
$ 39.41万 - 项目类别:
Deciphering dynamic signals in control of cell fate decisions
破译控制细胞命运决定的动态信号
- 批准号:
9335976 - 财政年份:2016
- 资助金额:
$ 39.41万 - 项目类别:
Deciphering dynamic signals in control of cell fate decisions
破译控制细胞命运决定的动态信号
- 批准号:
9137977 - 财政年份:2016
- 资助金额:
$ 39.41万 - 项目类别:
相似海外基金
Cell culture techniques for tackling emerging problems: why is the Western honey bee (Apis mellifera) vanishing?
用于解决新问题的细胞培养技术:西方蜜蜂 (Apis mellifera) 为何消失?
- 批准号:
465399-2014 - 财政年份:2014
- 资助金额:
$ 39.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Short-Term course in Human Embryonic Stem Cell Culture Techniques
人类胚胎干细胞培养技术短期课程
- 批准号:
7394940 - 财政年份:2003
- 资助金额:
$ 39.41万 - 项目类别:
Short-term course in human embryonic stem cell culture techniques
人类胚胎干细胞培养技术短期课程
- 批准号:
7233256 - 财政年份:2003
- 资助金额:
$ 39.41万 - 项目类别:
Short-term course in human embryonic stem cell culture techniques
人类胚胎干细胞培养技术短期课程
- 批准号:
7475716 - 财政年份:2003
- 资助金额:
$ 39.41万 - 项目类别:
Short-Term course in Human Embryonic Stem Cell Culture Techniques
人类胚胎干细胞培养技术短期课程
- 批准号:
7219996 - 财政年份:2003
- 资助金额:
$ 39.41万 - 项目类别:
Short-Term course in Human Embryonic Stem Cell Culture Techniques
人类胚胎干细胞培养技术短期课程
- 批准号:
7121789 - 财政年份:2003
- 资助金额:
$ 39.41万 - 项目类别:
Short-term course in human embryonic stem cell culture techniques
人类胚胎干细胞培养技术短期课程
- 批准号:
7123173 - 财政年份:2003
- 资助金额:
$ 39.41万 - 项目类别:
Development and Application of Insect Cell Culture Techniques
昆虫细胞培养技术的开发与应用
- 批准号:
01860008 - 财政年份:1989
- 资助金额:
$ 39.41万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B).
Genetic Application of Single Cell Culture Techniques in Alfalfa
单细胞培养技术在苜蓿遗传应用
- 批准号:
6320670 - 财政年份:1963
- 资助金额:
$ 39.41万 - 项目类别:
APPLICATION OF CELL CULTURE TECHNIQUES TO THE STUDY OF BACTERIAL TOXINS
细胞培养技术在细菌毒素研究中的应用
- 批准号:
3810982 - 财政年份:
- 资助金额:
$ 39.41万 - 项目类别:














{{item.name}}会员




