Harnessing Computerized Adaptive Testing, Transdiagnostic Theories of Suicidal Behavior, and Machine Learning to Advance the Emergent Assessment of Suicidal Youth (EASY).

利用计算机自适应测试、自杀行为跨诊断理论和机器学习来推进自杀青少年的紧急评估(EASY)。

基本信息

  • 批准号:
    10164860
  • 负责人:
  • 金额:
    $ 71.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-27 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Abstract: The emergency assessment of acute suicidal risk in adolescents is a daunting clinical challenge because our current ability to predict suicide attempts is weak, and because the risk for suicide attempts in suicidal adolescents is high. Nevertheless, there have been no studies that have examined the best approaches to the prediction of suicidal behavior in suicidal youth presenting to a psychiatric emergency department (PED). To address this research gap, we propose a study of 1800 youth presented to a regional PED, 1350 of whom present for evaluation of suicidal risk, in which youth are assessed in the PED, and followed up at 1, 3, and 6 months to determine which youth have made a suicide attempt. We propose 3 complementary approaches to assessment of suicidal risk. First, in this competitive renewal, we build on our success in developing computerized adaptive tests for 6 diagnostic groups, plus suicidal risk, during our previous project period. These self- and parent-reports can be completed in a total of 10-15 minutes. Second, because theory-driven assessments of suicide risk have strong predictive power in adults, but have never been tested prospectively in adolescents, we propose to test the predictive power of measures of Shneidman’s psychache (mental pain) and Joiner’s Interpersonal Theory of Suicide, which posits interactive roles of perceived burdensomeness, thwarted belonging, and acquired capacity for suicide in driving suicidal risk. Third, we aim to use machine learning (ML) and natural language processing (NLP) of electronic health records (EHRs) to identify youth at risk for suicide attempts. We hypothesize that each of these approaches: (1) CATs for suicide risk and for depression, anxiety, bipolar, ADHD, oppositional defiant, and conduct disorders); (2) theory-derived measures of suicidal risk; and (3) ML and NLP of EHRs, will each be superior to clinical assessment alone in the prediction of attempts, and that the combination of the 3 approaches will be more powerful than any one of these approaches alone. This study is innovative because it is one of the first to use CATs for the prediction of suicidal risk, in a consistently high risk population, the first prospective test of two leading theories of suicide in adolescents, the first to use machine learning and natural language processing to identify EHR predictors of suicide attempts in adolescents, and the first to test a combination of approaches to the identification of imminent suicidal risk in adolescents in a sufficiently large, high risk sample. The study is of potentially high impact because it could identify brief, easily disseminated assessment strategies to identify youth at high risk for suicidal behavior and add to clinicians’ ability to match intensity and type of resources to those at greatest clinical need. The approaches to be tested in this study could yield assessments that reflect the two imperatives of emergency mental health care: brevity and accuracy. With better ability to identify who is at risk for suicidal behavior, we will be in a much stronger position to identify who needs intervention and reverse the disturbing, decade-long trend of increases in adolescent suicide and suicidal behavior.
文摘:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David A. Brent其他文献

Avoidant attachment transmission to offspring in families with a depressed parent
有抑郁父母的家庭中回避型依恋向子女的传递
  • DOI:
    10.1016/j.jad.2023.01.059
  • 发表时间:
    2023-03-15
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Robert A. Tumasian;Hanga C. Galfalvy;Meghan R. Enslow;David A. Brent;Nadine Melhem;Ainsley K. Burke;J. John Mann;Michael F. Grunebaum
  • 通讯作者:
    Michael F. Grunebaum
4.57 BRIEF BEHAVIORAL THERAPY FOR ANXIETY AND DEPRESSION IN PEDIATRIC PRIMARY CARE: UPTAKE OF INTERVENTION AND COMMUNITY SERVICES BY ETHNIC MINORITY FAMILIES
  • DOI:
    10.1016/j.jaac.2016.09.252
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Haoyu Lee;Argero Zerr;John F. Dickerson;Kate Conover;Giovanna Porta;David A. Brent;V. Robin Weersing
  • 通讯作者:
    V. Robin Weersing
Deve-se utilizar antidepressivos no tratamento de depressão maior em crianças e adolescentes?
是否可以使用抗抑郁药来治疗儿童和青少年的主要抑郁症?
  • DOI:
    10.1590/s1516-44462005000200001
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Birmaher;David A. Brent
  • 通讯作者:
    David A. Brent
The psychological autopsy: methodological considerations for the study of adolescent suicide.
  • DOI:
    10.1111/j.1943-278x.1989.tb00365.x
  • 发表时间:
    1989-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    David A. Brent
  • 通讯作者:
    David A. Brent
Epidemiology of homicide in Allegheny County, Pennsylvania, between 1966-1974 and 1984-1993.
1966 年至 1974 年和 1984 年至 1993 年期间宾夕法尼亚州阿勒格尼县凶杀案的流行病学。
  • DOI:
    10.1006/pmed.1998.0306
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Albert T. Smith;Lewis H. Kuller;J. Perper;David A. Brent;Grace Moritz;Joseph P. Costantino
  • 通讯作者:
    Joseph P. Costantino

David A. Brent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David A. Brent', 18)}}的其他基金

Imaging the Suicide Mind using Neurosemantic Signatures as Markers of Suicidal Ideation and Behavior
使用神经语义特征作为自杀意念和行为的标记来想象自杀心理
  • 批准号:
    9901631
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
Imaging the Suicide Mind using Neurosemantic Signatures as Markers of Suicidal Ideation and Behavior
使用神经语义特征作为自杀意念和行为的标记来想象自杀心理
  • 批准号:
    10386788
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
The Center for Enhancing Triage and Utilization for Depression and Emergent Suicidality (ETUDES) in Pediatric Primary Care
儿科初级保健中抑郁症和紧急自杀加强分诊和利用中心 (ETUDES)
  • 批准号:
    9917834
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
The Center for Enhancing Treatment and Utilization for Depression and Emergent Suicidality (ETUDES) in Pediatric Primary Care
儿科初级保健中抑郁症和紧急自杀加强治疗和利用中心 (ETUDES)
  • 批准号:
    10631205
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10435004
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10631214
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
The Center for Enhancing Treatment and Utilization for Depression and Emergent Suicidality (ETUDES) in Pediatric Primary Care
儿科初级保健中抑郁症和紧急自杀加强治疗和利用中心 (ETUDES)
  • 批准号:
    10435003
  • 财政年份:
    2018
  • 资助金额:
    $ 71.88万
  • 项目类别:
1/2-Familial Early-Onset Suicide Attempt Biomarkers
1/2-家族性早发自杀企图生物标志物
  • 批准号:
    9263764
  • 财政年份:
    2015
  • 资助金额:
    $ 71.88万
  • 项目类别:
1/2 Brief Intervention for Suicide Risk Reduction in High Risk Adolescents
1/2 降低高危青少年自杀风险的简短干预措施
  • 批准号:
    8796231
  • 财政年份:
    2014
  • 资助金额:
    $ 71.88万
  • 项目类别:
Emergency Department Screen for Teens at Risk for Suicide (ED-STARS)
针对有自杀风险的青少年的急诊室筛查 (ED-STARS)
  • 批准号:
    8755416
  • 财政年份:
    2014
  • 资助金额:
    $ 71.88万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 71.88万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了