Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
基本信息
- 批准号:10170437
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-16 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyBiological ModelsBrainBrain DiseasesCellsCerebral cortexComplexCoupledDevelopmentElectrophysiology (science)EtiologyExcitatory SynapseFrequenciesFunctional ImagingFunctional disorderGoalsHomeostasisHumanImpairmentIndividualInhibitory SynapseInvestigationKnowledgeLong-Term PotentiationMaintenanceMental DepressionMental disordersMethodsModificationMolecularMusMuscarinic Acetylcholine ReceptorNeurodevelopmental DisorderNeuronsOutcomeParvalbuminsPharmacologyPhysiologyPropertyProteinsRecoveryRegulationResearchRoleSensorySpecificityStimulusSynapsesSynaptic plasticitySystemTestingTimeVisionVisualVisual CortexWorkflexibilityhippocampal pyramidal neuronimprovedin vivoinsightinward rectifier potassium channelnervous system disorderneural circuitneuronal patterningoptogeneticsorientation selectivityoverexpressionpostsynapticpreservationpresynapticresponsespatiotemporal
项目摘要
The ability of the cerebral cortex to perform incredibly complex functions resides in its intricate neural circuits
composed of a vast number of neurons. The synaptic interactions among cortical neurons ultimately manifest
as the interplay between excitation and inhibition, two opposing forces that work together to orchestrate the
spatiotemporal patterns of neuronal activity. Hence, the relationship between excitation and inhibition (E-I
relationship) is fundamental to many functional properties of cortical neurons such as the orientation selectivity
and contrast response function of visual cortical neurons. The importance of proper E-I relationship is also
underscored by the discovery of altered E-I relationship in many neurodevelopmental and psychiatric
disorders. However, the regulation of E-I relationship and the impacts of altering this relationship on the
functional response properties of cortical neurons remain poorly understood. Thus, the overall goal of this
project is to determine how the activity of individual neurons and homeostatic synaptic plasticity regulate
cortical excitation, inhibition, and E-I relationship. To this end, we used the developing mouse visual cortex as
a model system and developed molecular approaches to selectively reduce the excitability of a small number
of layer 2/3 pyramidal neurons in vivo, such that we can determine the cell-autonomous effect of neuronal
activity while minimizing the perturbation to the whole circuit. We found that these neurons counteract the
activity perturbation by homeostatic changes at a specific subset of excitatory and inhibitory synapses. These
results led to the central hypothesis that homeostatic plasticity differentially modifies distinct synaptic inputs of
individual cortical neurons to regulate their E-I relationship, thereby maintaining the activity levels and
functional response properties. We propose to combine molecular manipulations with optogenetic,
physiological, imaging, and anatomical methods to systematically delineate the homeostatic changes at
different synapses originating from distinct presynaptic neuronal types (Aim 1), to identify the underlying
synaptic mechanisms of input-specific homeostatic plasticity (Aim 2), and to determine the impact of these
synaptic changes on the visual response properties of neurons in vivo (Aim 3). The proposed research
connects three levels of investigations from synapse to circuit to system. The successful completion of this
project will provide insights into the role of homeostatic synaptic plasticity in regulating E-I relationship and
functional response properties of cortical neurons. The outcomes will also have an impact on our
understanding of how plasticity mechanisms help the brain cope with perturbations in general.
大脑皮层执行极其复杂功能的能力在于其复杂的神经回路
由大量的神经元组成。皮层神经元之间的突触相互作用最终表现出来
作为兴奋和抑制之间的相互作用,两种相反的力量共同协调
神经元活动的时空模式。因此,兴奋和抑制之间的关系(E-I
关系)是皮质神经元许多功能特性的基础,例如方向选择性
和视觉皮层神经元的对比反应功能。正确的 E-I 关系也很重要
许多神经发育和精神疾病中 E-I 关系改变的发现强调了这一点
失调。然而,E-I 关系的调节以及改变这种关系对
皮质神经元的功能反应特性仍然知之甚少。因此,本次活动的总体目标是
项目是确定单个神经元的活动和稳态突触可塑性如何调节
皮质兴奋、抑制和 E-I 关系。为此,我们使用正在发育的小鼠视觉皮层作为
模型系统和开发的分子方法来选择性地降低少数人的兴奋性
体内2/3层锥体神经元的细胞自主效应,这样我们就可以确定神经元的细胞自主效应
活动,同时最大限度地减少对整个电路的干扰。我们发现这些神经元抵消了
兴奋性和抑制性突触特定子集的稳态变化引起的活动扰动。这些
结果得出了一个中心假设,即稳态可塑性差异性地改变了突触的不同输入
单个皮层神经元调节其 E-I 关系,从而维持活动水平和
功能反应特性。我们建议将分子操作与光遗传学相结合,
生理学、成像和解剖学方法来系统地描绘体内平衡的变化
源自不同突触前神经元类型的不同突触(目标 1),以识别潜在的
输入特异性稳态可塑性的突触机制(目标 2),并确定这些机制的影响
突触变化对体内神经元视觉反应特性的影响(目标 3)。拟议的研究
连接从突触到电路到系统的三个层次的研究。本次活动的顺利完成
该项目将深入了解稳态突触可塑性在调节 E-I 关系和
皮质神经元的功能反应特性。其结果也会对我们产生影响
了解可塑性机制如何帮助大脑应对一般扰动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingshan Xue其他文献
Mingshan Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingshan Xue', 18)}}的其他基金
Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
- 批准号:
9923747 - 财政年份:2018
- 资助金额:
$ 39.63万 - 项目类别:
Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
- 批准号:
9765404 - 财政年份:2018
- 资助金额:
$ 39.63万 - 项目类别:
Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
- 批准号:
10397599 - 财政年份:2018
- 资助金额:
$ 39.63万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 39.63万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 39.63万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 39.63万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 39.63万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 39.63万 - 项目类别:














{{item.name}}会员




