Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits

调节神经回路中突触兴奋和抑制的活动依赖性机制

基本信息

  • 批准号:
    9765404
  • 负责人:
  • 金额:
    $ 39.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-16 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The ability of the cerebral cortex to perform incredibly complex functions resides in its intricate neural circuits composed of a vast number of neurons. The synaptic interactions among cortical neurons ultimately manifest as the interplay between excitation and inhibition, two opposing forces that work together to orchestrate the spatiotemporal patterns of neuronal activity. Hence, the relationship between excitation and inhibition (E-I relationship) is fundamental to many functional properties of cortical neurons such as the orientation selectivity and contrast response function of visual cortical neurons. The importance of proper E-I relationship is also underscored by the discovery of altered E-I relationship in many neurodevelopmental and psychiatric disorders. However, the regulation of E-I relationship and the impacts of altering this relationship on the functional response properties of cortical neurons remain poorly understood. Thus, the overall goal of this project is to determine how the activity of individual neurons and homeostatic synaptic plasticity regulate cortical excitation, inhibition, and E-I relationship. To this end, we used the developing mouse visual cortex as a model system and developed molecular approaches to selectively reduce the excitability of a small number of layer 2/3 pyramidal neurons in vivo, such that we can determine the cell-autonomous effect of neuronal activity while minimizing the perturbation to the whole circuit. We found that these neurons counteract the activity perturbation by homeostatic changes at a specific subset of excitatory and inhibitory synapses. These results led to the central hypothesis that homeostatic plasticity differentially modifies distinct synaptic inputs of individual cortical neurons to regulate their E-I relationship, thereby maintaining the activity levels and functional response properties. We propose to combine molecular manipulations with optogenetic, physiological, imaging, and anatomical methods to systematically delineate the homeostatic changes at different synapses originating from distinct presynaptic neuronal types (Aim 1), to identify the underlying synaptic mechanisms of input-specific homeostatic plasticity (Aim 2), and to determine the impact of these synaptic changes on the visual response properties of neurons in vivo (Aim 3). The proposed research connects three levels of investigations from synapse to circuit to system. The successful completion of this project will provide insights into the role of homeostatic synaptic plasticity in regulating E-I relationship and functional response properties of cortical neurons. The outcomes will also have an impact on our understanding of how plasticity mechanisms help the brain cope with perturbations in general.
大脑皮层执行难以置信的复杂功能的能力存在于其复杂的神经回路中

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingshan Xue其他文献

Mingshan Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingshan Xue', 18)}}的其他基金

Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
  • 批准号:
    10170437
  • 财政年份:
    2018
  • 资助金额:
    $ 39.63万
  • 项目类别:
Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
  • 批准号:
    9923747
  • 财政年份:
    2018
  • 资助金额:
    $ 39.63万
  • 项目类别:
Activity-Dependent Mechanisms Regulating Synaptic Excitation and Inhibition in Neural Circuits
调节神经回路中突触兴奋和抑制的活动依赖性机制
  • 批准号:
    10397599
  • 财政年份:
    2018
  • 资助金额:
    $ 39.63万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 39.63万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 39.63万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 39.63万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 39.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了