Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
基本信息
- 批准号:10175742
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAdministrative SupplementAdoptedAlgorithmsAreaCOVID-19Cessation of lifeCharacteristicsClinicalClinical Course of DiseaseClinical DataCommunitiesCountryDataData ScienceData SetDiseaseEconomicsElectronic Health RecordGenomic medicineGoalsGrantHealthHumanKnowledgeKnowledge DiscoveryMedicalMedical centerMethodsMiningNew York CityOntologyOutcomeParentsPatientsPhenotypePopulation HeterogeneityPostdoctoral FellowPublic HealthResearchResearch TrainingRisk FactorsSNOMED Clinical TermsStandardizationStructureSystemTerminologyUnified Medical Language SystemUnited StatesUniversitiesVirusabstractingbiomedical informaticscombatcomputer sciencedata modelingdata standardsdisease diagnosisdisorder preventiondisorder subtypefightinggraduate studenthealth datainfection riskinnovationinterdisciplinary collaborationinterestnovelpandemic diseaseparent grantphenotypic datasocialtraining opportunity
项目摘要
SUMMARY
Sharable, innovative and scalable methods for abstracting relevant characteristic patient phenotypes from
electronic health records (EHRs) and for systematically understanding disease relationships are critical for
accomplishing precise disease diagnoses and personalized disease prevention and treatment for patients.
As of May 28, 2020, there are 5,716,271 confirmed 2019 Novel Coronavirus (COVID-19) cases worldwide,
including 1,699,933 cases in the United States, and 356,124 deaths across over 200 countries, areas, and
territories including 100,442 deaths in the United States, with the numbers continually climbing. The pandemic
has had profound economic, social, and public health impact. As Columbia University Irving Medical Center
(CUIMC) has been fighting the virus on the frontline in the epicenter of New York City and treating more than
4,100 SARS-CoV-2 positive patients, we aim to address the urgent COVID-19 Public Heath need by
developing sharable phenotyping methods to identify and characterize COVID-19 cases using our EHR data
and multiple data standards, including the Observational Medical Outcomes Partnership (OMOP) Common
Data Model (CDM) and the Human Phenotype Ontology (HPO), and generate novel knowledge about COVID-
19, such as its risk factors, disease subtypes, and temporal clinical courses.
Our specific aims for this supplement are as follows: Extension to the original Aim 1: Develop and validate
scalable and sharable approaches to abstracting characteristic phenotypes of COVID-19 from both structured
and unstructured EHR data and to standardize the concept representations of these EHR phenotypes using
widely adopted data standards, including the OMOP CDM, HPO, SNOMED-CT, UMLS, and RxNorm.
Extension to the original Aim 3: Develop and validate methods for temporal phenotyping for COVID-19 and
methods for identifying disease subtypes of varying clinical outcomes among heterogeneous populations using
deep characteristic EHR phenotypes of COVID-19.
We will disseminate the resulting methods and knowledge with the broad scientific communities and the nation.
We will also leverage this supplement to create research and training opportunities for postdocs and graduate
students from biomedical informatics, data science and computer science, advancing interdisciplinary
collaborations in data science and biomedical informatics to combat COVID-19 and other health problems.
总结
可共享的、创新的和可扩展的方法,用于从
电子健康记录(EHR)和系统地了解疾病关系对于
实现对患者的精准疾病诊断和个性化疾病防治。
截至2020年5月28日,全球共有5,716,271例2019新型冠状病毒(COVID-19)确诊病例,
包括美国的1,699,933例,200多个国家,地区和
包括美国在内的100,442人死亡,数字不断攀升。疫情
对经济、社会和公共卫生产生了深远的影响。作为哥伦比亚大学欧文医学中心
(CUIMC)一直在纽约市震中的前线抗击病毒,
4,100名SARS-CoV-2阳性患者,我们的目标是通过以下方式解决紧急的COVID-19公共卫生需求:
利用我们的EHR数据开发可共享的表型分析方法,以识别和表征COVID-19病例
和多个数据标准,包括观察性医学成果伙伴关系(OMOP)共同
数据模型(CDM)和人类表型本体(HPO),并生成有关COVID的新知识-
19,如其危险因素,疾病亚型,和时间的临床过程。
我们的具体目标如下:扩展到原来的目标1:开发和验证
从结构化和可扩展的方法中提取COVID-19的特征表型
和非结构化的EHR数据,并使用
广泛采用的数据标准,包括OMOP CDM、HPO、SNOMED-CT、UMLS和RxNorm。
对最初目标3的扩展:开发和验证COVID-19的时间表型分析方法,
用于鉴定异质群体中不同临床结果的疾病亚型的方法,
COVID-19的深层特征EHR表型。
我们将向广大科学界和全国传播由此产生的方法和知识。
我们还将利用这一补充,创造研究和培训的机会,博士后和研究生
学生从生物医学信息学,数据科学和计算机科学,推进跨学科
在数据科学和生物医学信息学方面的合作,以应对COVID-19和其他健康问题。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-label topic classification for COVID-19 literature with Bioformer.
使用 Bioformer 对 COVID-19 文献进行多标签主题分类。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fang,Li;Wang,Kai
- 通讯作者:Wang,Kai
Clusters, crop dusters, and myth busters: a scoping review of environmental exposures and cutaneous T-cell lymphoma.
集群、农作物喷粉机和神话终结者:环境暴露和皮肤 T 细胞淋巴瘤的范围审查。
- DOI:10.23736/s2784-8671.23.07729-0
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Gordon,EmilyR;Adeuyan,Oluwaseyi;Schreidah,CelineM;Chen,Caroline;Trager,MeganH;Lapolla,BrigitA;Fahmy,LaurenM;Weng,Chunhua;Geskin,LarisaJ
- 通讯作者:Geskin,LarisaJ
Enhancing phenotype recognition in clinical notes using large language models: PhenoBCBERT and PhenoGPT.
- DOI:10.1016/j.patter.2023.100887
- 发表时间:2024-01-12
- 期刊:
- 影响因子:6.5
- 作者:Yang, Jingye;Liu, Cong;Deng, Wendy;Wu, Da;Weng, Chunhua;Zhou, Yunyun;Wang, Kai
- 通讯作者:Wang, Kai
Pathway analysis of genomic pathology tests for prognostic cancer subtyping.
用于预后癌症亚型的基因组病理学测试的路径分析。
- DOI:10.1016/j.jbi.2019.103286
- 发表时间:2019
- 期刊:
- 影响因子:4.5
- 作者:Lyudovyk,Olga;Shen,Yufeng;Tatonetti,NicholasP;Hsiao,SusanJ;Mansukhani,MaheshM;Weng,Chunhua
- 通讯作者:Weng,Chunhua
Comparative effectiveness of medical concept embedding for feature engineering in phenotyping.
- DOI:10.1093/jamiaopen/ooab028
- 发表时间:2021-04
- 期刊:
- 影响因子:2.1
- 作者:Lee J;Liu C;Kim JH;Butler A;Shang N;Pang C;Natarajan K;Ryan P;Ta C;Weng C
- 通讯作者:Weng C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNHUA WENG其他文献
CHUNHUA WENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUNHUA WENG', 18)}}的其他基金
Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
- 批准号:
9925808 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
- 批准号:
10164857 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
9755488 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
9983140 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
9332989 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
8056227 - 财政年份:2010
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
7784533 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
7653874 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
8292499 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
8884643 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant