Deep phenotyping in Electronic Health Records for Genomic Medicine

基因组医学电子健康记录中的深度表型分析

基本信息

  • 批准号:
    9925808
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-17 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The overarching goal of the project is to establish a genomic medicine learning system to accelerate genomic knowledge discovery and application in electronic health records (EHRs). We will integrate deep characteristic phenotypes extracted from EHRs and evolving knowledge of genotype-phenotype associations to optimize the accuracy of variant interpretation and the cost-effectiveness of clinical genome/exome sequencing, and to accelerate the discovery of causal genes by constructing a dynamic genotype-phenotype knowledge network. Prior knowledge on phenotype-gene relationships and phenotypic information about patients can facilitate the identification of disease-causing mutations from thousands of genetic variants in the context of clinical genomic sequencing; however, how best to abstract phenotype information from notes in the EHRs of patients who are diagnosed with or evaluated for monogenetic disorders, standardize the computable representation of phenotypes, and utilize it in genomic interpretation remains unclear. Additionally, how to systematically compare phenotypes across diseases to discover new knowledge in human genetics remains a largely untapped area with great promise. To address these challenges, we will develop and validate scalable and portable open-source natural language processing (NLP) methods for automated and accurate abstraction of characteristic phenotype concepts (e.g., “j-shaped sella turcica” and “short stature”) from EHR narratives. We will then develop a phenotype-driven scoring system called EHR-Phenolyzer to predict the likely candidate genetic variants associated with the phenotypes for patients with genomic sequencing and a high probability of a monogenic condition. On this basis, we will develop a probabilistic disease diagnosis and knowledge discovery system using rich and deep EHR phenotypes, and evaluate these methods for genomic diagnosis and discovery using large- scale clinical exome sequencing data. Ultimately, these methods will support efficient, effective, and scalable genomic diagnostics, and facilitate the implementation of genome-guided precision medicine in clinical practice.
项目摘要 该项目的总体目标是建立一个基因组医学学习系统, 知识发现和电子健康记录(EHRs)中的应用。我们将深度融合特色 从EHR中提取表型,并不断发展基因型-表型关联的知识,以优化 变异解释的准确性和临床基因组/外显子组测序的成本效益,以及 通过构建动态的基因型-表型知识网络,加速致病基因的发现。 关于表型-基因关系的先验知识和患者的表型信息可以促进 在临床基因组学背景下从数千种遗传变异中鉴定致病突变 然而,如何最好地从患者的EHR中提取表型信息, 诊断或评估单基因疾病,标准化的可计算表示 表型,并利用它在基因组的解释仍然不清楚。如何系统地比较 发现人类遗传学的新知识仍然是一个基本上尚未开发的领域 很有前途为了应对这些挑战,我们将开发和验证可扩展和可移植的开源 自然语言处理(NLP)方法,用于自动和准确地提取特征表型 概念(例如,“J形蝶鞍”和“身材矮小”)。然后我们将开发一个 表型驱动的评分系统,称为EHR-Phenolyzer,用于预测可能的候选遗传变异 与基因组测序患者的表型相关, 条件在此基础上,我们将开发一个概率疾病诊断和知识发现系统, 丰富和深入的EHR表型,并评估这些方法的基因组诊断和发现,使用大的- 规模临床外显子组测序数据。最终,这些方法将支持高效、有效和可扩展的 基因组诊断,并促进在临床实践中实施基因组指导的精准医学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHUNHUA WENG其他文献

CHUNHUA WENG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHUNHUA WENG', 18)}}的其他基金

Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
  • 批准号:
    10175742
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
  • 批准号:
    10164857
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    9983140
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    9755488
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    9332989
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    8056227
  • 财政年份:
    2010
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    7784533
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    7653874
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    8292499
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
  • 批准号:
    8884643
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了