Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
基本信息
- 批准号:9332989
- 负责人:
- 金额:$ 60.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-14 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:BiometryCerealsCharacteristicsClinicalClinical DataClinical ResearchClinical TrialsCodeCohort StudiesCommunicationComputer SimulationDataData AnalyticsData ReportingData ScienceDecision AidElectronic Health RecordEligibility DeterminationEpigenetic ProcessEvaluationEvidence Based MedicineExclusion CriteriaFeasibility StudiesFeedbackFormulationGlycosylated hemoglobin AGoalsGraphHumanICD-9ImageryIndividualInformaticsInformation DisseminationKnowledgeKnowledge DiscoveryLifeMathematicsMental disordersMethodsMinority RecruitmentNon-Insulin-Dependent Diabetes MellitusParticipantPatientsPhenotypePlant RootsPopulationPopulation AnalysisPositioning AttributePublic HealthRecruitment ActivityResearchResearch PersonnelSampling BiasesSelection BiasSemanticsStructureSystemTarget PopulationsTechniquesTextbasebiomedical informaticsdesigngenomic datahealth disparityhuman studyimprovedindexinginformation organizationinnovationinteroperabilityknowledge basenovelpatient safetystudy populationsuccesstext searchingtrait
项目摘要
Project Summary
Our long-term goal is to optimize the design and conduct of human clinical research using informatics1.
Eligibility criteria define the study population for every human study. Their clarity, accuracy and precision are
crucial to the success of participant recruitment, results dissemination, and evidence synthesis. Our goal for this
renewal is to build a data-driven and knowledge-based decision aid for real-life clinical researchers to optimize
research eligibility criteria definition.
The difference in the semantic representation of an eligibility criterion (e.g., having Type 2 diabetes mellitus)
and its operationalization as a clinical variable (e.g., HbA1C ≥ 6.5% or ICD-9 code = ‘250.00’) has been defined
as the semantic gap2, the closing of which is a grand challenge for biomedical informatics2,3. Our research has
contributed to the in-depth understanding of this semantic gap and how it limits computational reuse and effective
communication of eligibility criteria to key stakeholders of clinical research4-9. We have developed informatics
methods to help bridge this gap, by transforming free-text eligibility criteria into semi-structured formats to aid in
study cohort identification10-13, analysis of the population representativeness of related clinical trials14-19, text
mining of common eligibility features and their trends18,20-24, and identification of questionable exclusion criteria
for mental disorder trials25. We used several of these methods to develop a visualization system called VITTA17
that shows how eligibility criteria and the clinical features of clinical trial populations vary across related trials.
More importantly, our research has revealed an understudied root cause of the semantic gap, which is that
eligibility criteria are often poorly defined, inaccurate, nonspecific, or imprecise, and not easily translatable to the
real-world electronic health record (EHR) data representations to which the criteria must be operationalized. The
advent of Big Patient Data offers an unprecedented opportunity to draw on the characteristics of real-world
patients to guide and inform the data-driven precise definition of eligibility criteria25. By defining the characteristics
of the intended study population, eligibility criteria critically influence the population representativeness of a
clinical study, which further influences the tradeoff between patient safety and research results’ replicability and
generalizability. We hypothesize that by integrating patient data, including clinical and genomic data, with public
clinical trial information, we can proactively guide investigators to optimize the precision, recruitment feasibility
and representativeness of eligibility criteria. This research will demonstrate a novel data-driven and
knowledge-based system to assist researchers with optimizing eligibility criteria, through innovative informatics
methods for integrating proprietary and public data for deep phenotyping, target population profiling, and
quantification and visualization of population representativeness.
项目摘要
我们的长期目标是使用信息学优化人类临床研究的设计和实施。
合格性标准定义了每项人体研究的研究人群。其清晰度、准确度和精密度
这对参与者招募、结果传播和证据综合的成功至关重要。我们的目标是
更新是建立一个数据驱动和基于知识的决策辅助现实生活中的临床研究人员,以优化
研究资格标准定义。
资格标准的语义表示的差异(例如,2型糖尿病患者)
以及其作为临床变量的可操作性(例如,HbA 1C ≥ 6.5%或ICD-9代码=“250.00”)
作为语义差距2,关闭这是一个巨大的挑战,生物医学信息学2,3。我们的研究
有助于深入了解这种语义差距,以及它如何限制计算重用和有效的
向临床研究的主要利益相关者传达合格性标准4 -9。我们发展了信息学
通过将自由文本资格标准转换为半结构化格式来帮助弥补这一差距的方法
研究队列识别10 -13,相关临床试验的人群代表性分析14 -19,正文
挖掘常见资格特征及其趋势18、20-24,并确定可疑的排除标准
精神障碍试验25.我们使用其中的几种方法开发了一个可视化系统VITTA 17
这显示了临床试验人群的合格标准和临床特征在相关试验中的差异。
更重要的是,我们的研究揭示了语义鸿沟的一个未充分研究的根本原因,那就是,
资格标准通常定义不清、不准确、不具体或不精确,而且不易于翻译成
真实世界的电子健康记录(EHR)数据表示,标准必须可操作。的
大患者数据的出现提供了一个前所未有的机会,可以利用现实世界的特征,
患者指导和告知数据驱动的资格标准的精确定义25.通过定义特征
在预期的研究人群中,合格性标准严重影响研究人群的代表性。
临床研究,这进一步影响了患者安全和研究结果可复制性之间的权衡,
普遍性我们假设,通过整合患者数据,包括临床和基因组数据,
临床试验信息,我们可以主动指导研究者优化精准度,招募可行性
资格标准的代表性。这项研究将展示一种新的数据驱动和
以知识为基础的系统,通过创新的信息学协助研究人员优化资格标准
用于整合专有和公共数据以进行深度表型分型、目标群体分析和
人口代表性的量化和可视化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNHUA WENG其他文献
CHUNHUA WENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUNHUA WENG', 18)}}的其他基金
Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
- 批准号:
10175742 - 财政年份:2020
- 资助金额:
$ 60.37万 - 项目类别:
Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
- 批准号:
9925808 - 财政年份:2018
- 资助金额:
$ 60.37万 - 项目类别:
Deep phenotyping in Electronic Health Records for Genomic Medicine
基因组医学电子健康记录中的深度表型分析
- 批准号:
10164857 - 财政年份:2018
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
9983140 - 财政年份:2017
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
9755488 - 财政年份:2017
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
8056227 - 财政年份:2010
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
7784533 - 财政年份:2009
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
7653874 - 财政年份:2009
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
8292499 - 财政年份:2009
- 资助金额:
$ 60.37万 - 项目类别:
Bridging the Semantic Gap Between Research Eligibility Criteria and Clinical Data
弥合研究资格标准和临床数据之间的语义差距
- 批准号:
8055880 - 财政年份:2009
- 资助金额:
$ 60.37万 - 项目类别:
相似海外基金
Facing Forwards - Understanding epidermal development in cereals
面向未来 - 了解谷物的表皮发育
- 批准号:
BB/Y001990/1 - 财政年份:2024
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
Facing Forwards - Understanding epidermal development in cereals
面向未来 - 了解谷物的表皮发育
- 批准号:
BB/Y001850/1 - 财政年份:2024
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
A new presymbiotic recognition mechanism from cereals enabling root invasion by arbuscular mycorrhizal fungi
来自谷物的新的前共生识别机制使丛枝菌根真菌能够入侵根部
- 批准号:
BB/Y001087/1 - 财政年份:2024
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
A new presymbiotic recognition mechanism from cereals enabling root invasion by arbuscular mycorrhizal fungi
来自谷物的新的前共生识别机制使丛枝菌根真菌能够入侵根部
- 批准号:
BB/Y001796/1 - 财政年份:2024
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
Facing Forwards - understanding epidermal development in cereals
面向未来——了解谷物的表皮发育
- 批准号:
BB/Y00129X/1 - 财政年份:2024
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
A new presymbiotic recognition mechanism from cereals enabling root invasion by arbuscular mycorrhizal fungi.
来自谷物的一种新的共生前识别机制,使丛枝菌根真菌能够入侵根部。
- 批准号:
BB/Y001133/1 - 财政年份:2024
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
Why did we start Fermenting cereals? A molecular dissection of Ancient Bread and Beer making (FABB)
我们为什么开始发酵谷物?
- 批准号:
NE/X01469X/1 - 财政年份:2023
- 资助金额:
$ 60.37万 - 项目类别:
Research Grant
Molecular switches and genetic consequences of grain retention in cereals
谷物中谷物保留的分子开关和遗传后果
- 批准号:
DP220102271 - 财政年份:2022
- 资助金额:
$ 60.37万 - 项目类别:
Discovery Projects
Your Best Face Forward - how cereals regulate their epidermal surfaces.
你的最佳面容 - 谷物如何调节其表皮表面。
- 批准号:
2765398 - 财政年份:2022
- 资助金额:
$ 60.37万 - 项目类别:
Studentship
Priming cereals for stress: epigenome editing in Brachypodium distachyon
为谷物应对压力做好准备:二穗短柄草的表观基因组编辑
- 批准号:
546861-2020 - 财政年份:2022
- 资助金额:
$ 60.37万 - 项目类别:
Postgraduate Scholarships - Doctoral