Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
基本信息
- 批准号:9287487
- 负责人:
- 金额:$ 36.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAgingAlzheimer&aposs DiseaseBedsBehavioralBig DataBiologicalBiological MarkersBrainClinicalClinical DataCohort StudiesComplexDataData SetDetectionDevelopmentDiagnostic testsDisciplineDiseaseDisease ProgressionEvaluationGenesGeneticGenetic VariationGenomicsGenotypeHealthHeterogeneityIndianaIndividualInformaticsKnowledgeMachine LearningMagnetic Resonance ImagingMediatingMediationMedical ImagingMemoryMeta-AnalysisMethodsModelingMolecularMultivariate AnalysisNerve DegenerationNeurodegenerative DisordersOutcomePhenotypePositron-Emission TomographyProteomicsPublic HealthScienceStatistical MethodsStructureSusceptibility GeneTechnologyTestingTimeValidationVariantbasebiomedical informaticscohortdata integrationdiagnostic biomarkerdisease classificationendophenotypeepigenomicsgenetic associationgenetic varianthigh dimensionalityhigh riskimprovedinsightinterestlearning strategymathematical modelmetabolomicsmultimodalityneuroimagingnew therapeutic targetnovelnovel diagnosticspredict clinical outcomerare variantrisk varianttherapeutic targettranscriptomicsuser friendly software
项目摘要
ABSTRACT
Rapid progress in biomedical informatics has generated massive high-dimensional data sets (“big data”),
ranging from clinical information and medical imaging to genomic sequence data. The scale and complexity
of these data sets hold great promise, yet present substantial challenges. To fully exploit the potential
informativeness of big data, there is an urgent need to find effective ways to integrate diverse data from
different levels of informatics technologies. Existing approaches and methods for data integration to date
have several important limitations. In this project, we propose novel statistical methods and strategies to
integrate neuroimaging, multi-omics, and clinical/behavioral data sets. To increase power for association
analysis compared to existing methods, we propose a novel multi-phenotype multi-variant association
method that can evaluate the cumulative effect of common and rare variants in genes or regions of interest,
incorporate prior biological knowledge on the multiple phenotype structure, identify associated phenotypes
among multiple phenotypes, and be computationally efficient for high-dimensional phenotypes. To improve
the prediction of clinical outcomes, we propose a novel machine learning strategy that can integrate
multimodal neuroimaging and multi-omics data into a mathematical model and can incorporate prior
biological knowledge to identify genomic interactions associated with clinical outcomes. The ongoing
Alzheimer's Disease Neuroimaging Initiative (ADNI) and Indiana Memory and Aging Study (IMAS) projects
as a test bed provide a unique opportunity to evaluate/validate the proposed methods. Specific Aims: Aim 1:
to develop powerful statistical methods for multivariate tests of associations between multiple phenotypes
and a single genetic variant or set of variants (common and rare) in regions of interest, and to develop
methods for mediation analysis to integrate neuroimaging, genetic, and clinical data to test for direct and
indirect genetic effects mediated through neuroimaging phenotypes on clinical outcomes; Aim 2: to develop
a novel multivariate model that combines multi-omics and neuroimaging data using a machine learning
strategy to predict individuals with disease or those at high-risk for developing disease, and to develop a
novel multivariate model incorporating prior biological knowledge to identify genomic interactions associated
with clinical outcomes; Aim 3: to evaluate and validate the proposed methods using real data from the ADNI
and IMAS cohorts; and Aim 4: to disseminate and support publicly available user-friendly software that
efficiently implements the proposed methods. RELEVANCE TO PUBLIC HEALTH: Alzheimer's disease
(AD) as an exemplar is an increasingly common progressive neurodegenerative condition with no validated
disease modifying treatment. The proposed multivariate methods are likely to help identify novel diagnostic
biomarkers and therapeutic targets for AD. Identifying new susceptibility loci/biomarkers for AD has
important implications for gaining greater insight into the molecular mechanisms underlying AD.
抽象的
生物医学信息学的快速进步产生了海量的高维数据集(“大数据”),
范围从临床信息和医学成像到基因组序列数据。规模和复杂性
这些数据集蕴藏着巨大的希望,但也带来了巨大的挑战。充分挖掘潜力
大数据的信息量巨大,迫切需要找到有效的方法来整合来自不同领域的各种数据。
不同水平的信息技术。迄今为止现有的数据集成途径和方法
有几个重要的限制。在这个项目中,我们提出了新的统计方法和策略
整合神经影像、多组学和临床/行为数据集。增强协会力量
与现有方法相比,我们提出了一种新的多表型多变异关联
可以评估基因或感兴趣区域中常见和罕见变异的累积效应的方法,
结合先前关于多种表型结构的生物学知识,识别相关的表型
在多个表型之间,并且对于高维表型具有计算效率。改善
为了预测临床结果,我们提出了一种新颖的机器学习策略,可以集成
将多模态神经影像和多组学数据整合到一个数学模型中,并且可以合并先前的
生物学知识来识别与临床结果相关的基因组相互作用。正在进行的
阿尔茨海默病神经影像计划 (ADNI) 和印第安纳州记忆与衰老研究 (IMAS) 项目
作为测试平台,提供了评估/验证所提出的方法的独特机会。具体目标: 目标 1:
开发强大的统计方法来对多种表型之间的关联进行多变量测试
以及感兴趣区域中的单个遗传变异或一组变异(常见和罕见),并开发
中介分析方法整合神经影像、遗传和临床数据以测试直接和
通过神经影像表型介导的间接遗传效应对临床结果;目标2:发展
一种新颖的多变量模型,使用机器学习结合多组学和神经影像数据
预测患有疾病或处于患病高风险的个体的策略,并制定
新颖的多变量模型结合了先前的生物学知识来识别相关的基因组相互作用
具有临床结果;目标 3:使用 ADNI 的真实数据评估和验证所提出的方法
和 IMAS 队列;目标 4:传播和支持公开的用户友好型软件
有效地实施所提出的方法。与公众健康的相关性:阿尔茨海默病
(AD) 作为一个例子是一种越来越常见的进行性神经退行性疾病,没有经过验证的
疾病改变治疗。所提出的多变量方法可能有助于识别新的诊断方法
AD 的生物标志物和治疗靶点。识别 AD 新的易感位点/生物标志物
对于更深入地了解 AD 的分子机制具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10175930 - 财政年份:2021
- 资助金额:
$ 36.71万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 36.71万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10687123 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 36.71万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别: