Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
基本信息
- 批准号:10717244
- 负责人:
- 金额:$ 80.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAfrican ancestryAreaAtrial FibrillationCardiomyopathiesCardiovascular DiseasesCardiovascular systemClinicalComplexCoronary ArteriosclerosisDNADataDevelopmentDiseaseEarly DiagnosisEarly identificationElectronic Health RecordElectronic Medical Records and Genomics NetworkEmerging TechnologiesEuropean ancestryGeneticGenetic Predisposition to DiseaseGenetic RiskGenomeGoalsHealth PersonnelHeart failureIncidenceIndividualInformaticsInvestigationLifeMachine LearningMathematicsMedicineMethodsModelingMorbidity - disease ratePhenotypePrecision HealthPreventionPrevention strategyPreventive therapyPublic HealthResearchRiskRisk FactorsScoring MethodSurveysTestingTranslatingTranslationsVariantVascular DiseasesVeteransbiobankcardiac muscle diseasecardiovascular disorder riskcardiovascular risk factorclinical careclinical decision supportclinical implementationclinical riskcohortdata integrationdeep learning modeldesigndisorder preventiondisorder riskearly screeningeffective therapyexomegenetic informationgenetic risk factorgenetic variantgenome-wideheart rhythmhigh risk populationimprovedinnovationmachine learning methodmortalitynon-geneticnovelpolygenic risk scorepredictive modelingpressureprogramsprototyperare variantresponserisk predictionrisk prediction modelsocialsocial health determinantsstatisticstraittranslational impacttranslational potentialwhole genome
项目摘要
PROJECT SUMMARY
Early screening and prevention of individuals at risk of complex diseases are important strategies for reducing
morbidity and mortality. Polygenic risk scores (PRS) are the cumulative, mathematical aggregation of risk derived
from the contributions of many DNA variants across the genome. PRS are an emerging technology in the field
of disease risk prediction and have been shown to be correlated with disease incidence. While PRS have shown
great promise for complex diseases, current PRS models are overly simplistic and have limited predictive power
and clinical utility. PRS do not account for the effects of rare genetic variants or other risk factors (clinical,
environmental, social determinants of health) on disease risk. Rare variants generally have greater effects on
disease risk due to selective pressure, but only a small number of individuals carry any single rare variant. The
sparsity of rare variants makes it difficult to directly incorporate them into PRS. Additionally, while it is known that
clinical, environmental, and social risk factors also influence risk, few analyses have successfully integrated PRS
with these important non-genetic factors.
To address this issue, we will develop novel translational informatics methods that integrate clinical,
environmental, and genetic data to improve disease risk prediction. We will assess the clinical utility of these
integrated risk prediction models using cardiovascular disease (CVD) to evaluate the potential for translation to
clinical use. Based on the complexity of CVD, we hypothesize that a comprehensive range of risk factors along
with rare variants need to be incorporated into PRS to improve the risk prediction and maximize the clinical utility
of PRS for CVD.
To achieve our goal, our specific aims are: 1) To develop novel methods that incorporate rare genetic variants
into Polygenic Risk Scores (PRS); 2) To evaluate Integrated Risk Models that combine clinical, environmental,
and social risk factors with PRS; 3) To develop and evaluate deep learning models integrating genetic, clinical,
environmental, and social risk factors; 4) To translate our integrated models into the electronic health record
(EHR). If these specific aims are achieved, we will have a set of integrated models that can be used in
downstream clinical implementation programs to ultimately have a translational impact on disease treatment and
prevention. Using these novel computational risk prediction models for precision health, along with our EHR
integration approaches, will allow for the translation of integrated risk prediction into routine clinical care.
项目摘要
对有复杂疾病风险的个人进行早期筛查和预防是减少艾滋病毒/艾滋病感染的重要战略。
发病率和死亡率。多基因风险评分(PRS)是累积的,数学聚合的风险,
基因组中许多DNA变异的贡献。PRS是该领域的新兴技术
的疾病风险预测,并已被证明与疾病的发病率。虽然PRS显示
虽然PRS模型对复杂疾病有很大的前景,但目前的PRS模型过于简单,预测能力有限
和临床实用性。PRS不能解释罕见遗传变异或其他风险因素的影响(临床,
健康的环境、社会决定因素)对疾病风险的影响。罕见的变异通常对
由于选择压力,疾病风险很小,但只有少数人携带任何单一的罕见变异。的
罕见变异体的稀疏性使得难以将它们直接并入PRS中。此外,虽然已知
临床、环境和社会风险因素也会影响风险,很少有分析成功整合了PRS
这些重要的非遗传因素。
为了解决这个问题,我们将开发新的翻译信息学方法,
环境和遗传数据,以改善疾病风险预测。我们将评估这些的临床实用性
使用心血管疾病(CVD)的综合风险预测模型,以评估转化为
临床应用。基于心血管疾病的复杂性,我们假设一系列全面的危险因素沿着
需要将罕见变异纳入PRS,以改善风险预测并最大限度地提高临床效用
心血管疾病的PRS。
为了实现我们的目标,我们的具体目标是:1)开发新的方法,将罕见的遗传变异
多基因风险评分(PRS); 2)评价结合联合收割机临床、环境
和社会风险因素; 3)开发和评估深度学习模型,整合遗传,临床,
环境和社会风险因素; 4)将我们的综合模型转化为电子健康记录
(EHR)。如果这些具体目标得以实现,我们将拥有一套可用于以下方面的综合模式:
下游临床实施计划,最终对疾病治疗产生转化影响,
预防使用这些新型计算风险预测模型以及我们的EHR来实现精准健康,沿着而来
整合方法将允许将整合的风险预测转化为常规的临床护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10175930 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10687123 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 80.48万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9287487 - 财政年份:2017
- 资助金额:
$ 80.48万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 80.48万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 80.48万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 80.48万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 80.48万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 80.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 80.48万 - 项目类别:
Research Fellowships