Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
基本信息
- 批准号:10687123
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBig DataBig Data MethodsBioinformaticsCaringChromosome MappingChronicClimateClinicalClinical DataClinical InformaticsCollectionCommunitiesComplexCreativenessDataData SetDiagnosisDiseaseElectronic Health RecordEnvironmental ExposureEtiologyGenesGeneticGenomicsGenotypeGoalsGraphHealthHumanIndividualInformaticsInternational Classification of Disease CodesKnowledgeLife StyleLinkMachine LearningMapsMeasuresMedicalMedical GeneticsMedicineMethodologyMethodsModelingMolecularMonitorNetwork-basedParticipantPatientsPatternPhenotypePopulationPreventionRecording of previous eventsResearchResearch PersonnelRiskScoring MethodSourceSystemTimeTranslatingVariantVeteransVisitVisualization softwarebig biomedical databiobankclinical decision supportcohortcomorbiditydata integrationdesigndisease diagnosiselectronic health datagenetic architecturegenetic associationgenetic informationgenetic variantgenomic datahigh dimensionalityhuman diseaseimprovedindividual patientinteractive toollarge scale datanon-geneticnovelpatient variabilityphenomephenotypic datapleiotropismprecision medicineprogramsrare variantsupervised learningtooltreatment strategytrend
项目摘要
Rapid progress in translational bioinformatics and clinical informatics for precision medicine has
provided many computing and informatics methodologies to provide better prediction, diagnosis and
treatment strategy as a clinical utility. In particular, high dimensional and large-scale
biomedical data sets, ranging from clinical data to ‘omics data, provide an unprecedented
opportunity for translating the newly found knowledge from biomedical big data analytics to
support clinical decisions. The complexity and scale of these big data sets hold great
promise, yet present substantial challenges. As one of important concerns for clinicians,
comorbidity is a well- documented phenomenon in medicine in which one or more medical conditions
exist and potentially interact with one another, thereby influencing the primary clinical
condition. Several studies show variability in the number of comorbid conditions that can
exist at one time, and patterns of disease presentation differ from one chronic condition to
another. Thus, there is a clear need to improve care for individuals with multiple
comorbidities, but doing so requires a much more detailed understanding of the trends of disease
associations than we currently possess. Previous studies have primarily focused on a
handful of specific comorbidities; investigating the underlying causes of broad disease
comorbidity across the human diseasome has been challenging. Fortunately, in the past
decade, comprehensive collections of disease diagnosis data have become available, primarily
in the form of data from electronic health records (EHRs). Retrospectively, we can use a patient’s
health history to identify comorbidities and apply a data-driven approach to studying disease
comorbidity patterns that considers all possible disease comorbidities. In particular, developing
computing and modeling of large-scale data that integrates newly defined comorbidity patterns with
genomics will hold great potential for uncovering molecular mechanisms of disease. Primarily, we
will elucidate the underlying genetic and non-genetic factors that influence disease comorbidity.
We will apply two orthogonal approaches to identify comorbidities: 1) deriving from disease
co-occurrence using EHR data alone, and 2) deriving from pleiotropic genetic associations using the
EHR-linked biobank dataset. Network-based approaches have the potential to uncover unexpected
relationships between diseases. One of the most significant advantages of our proposal is the
linking of a single-source EHR to genomic data; this provides the opportunity to
revisit individual-level genotype and phenotype data for the design of more targeted
studies and to ask more specific questions. Additionally, our results can be used to develop
a novel comorbidity risk score that combines both clinical data and genetic effects, which might
constitute a new tool for clinical prevention and monitoring. These goals are very much in keeping
with today’s climate of precision medicine, where treatment and prevention are ideally designed to
consider an individual patient’s variability in genetics, lifestyle, and environmental exposures.
精准医学的转化生物信息学和临床信息学的快速发展,
提供了许多计算和信息学方法,以提供更好的预测,诊断和
治疗策略作为临床实用工具。特别是,高维和大规模
生物医学数据集,从临床数据到“组学数据”,提供了前所未有的
将生物医学大数据分析中新发现的知识转化为
支持临床决策。这些大数据集的复杂性和规模
承诺,但也面临着巨大的挑战。作为临床医生关注的重要问题之一,
合并症是一种医学上有据可查的现象,
存在并可能相互作用,从而影响主要临床
条件几项研究表明,在一些共病的情况下,
存在于同一时间,疾病表现的模式不同,从一个慢性疾病,
另因此,显然需要改善对患有多种疾病的个人的护理。
但这样做需要更详细地了解疾病的趋势
比我们现在拥有的更多。以前的研究主要集中在
少数特定的合并症;调查广泛疾病的根本原因
在人类疾病中的共患病一直是具有挑战性的。幸运的是,在过去,
十年来,已经可以获得全面的疾病诊断数据集,主要是
以电子健康记录(EHR)的数据形式。我们可以用病人的
健康史,以确定合并症,并应用数据驱动的方法来研究疾病
合并症模式,考虑所有可能的疾病合并症。特别是发展中
大规模数据的计算和建模,
基因组学在揭示疾病的分子机制方面具有巨大的潜力。首先,我们
将阐明潜在的遗传和非遗传因素,影响疾病合并症。
我们将应用两种正交方法来识别合并症:1)源于疾病
共现使用EHR数据单独,和2)来自多效性遗传协会使用
EHR关联生物库数据集。基于网络的方法有可能发现意想不到的
疾病之间的关系。我们的建议最重要的优点之一是,
将单一来源的EHR与基因组数据联系起来;这提供了机会,
重新审视个体水平的基因型和表型数据,以设计更有针对性的
研究并提出更具体的问题。此外,我们的研究结果可用于开发
一种新的合并症风险评分,结合了临床数据和遗传效应,
构成临床预防和监测的新工具。这些目标在很大程度上
随着当今精准医学的发展,治疗和预防的理想设计是
考虑个体患者在遗传、生活方式和环境暴露方面的可变性。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of natural selection on global patterns of genetic variation and association with clinical phenotypes at genes involved in SARS-CoV-2 infection.
- DOI:10.1073/pnas.2123000119
- 发表时间:2022-05-24
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Polygenic risk for type 2 diabetes, lifestyle, metabolic health, and cardiovascular disease: a prospective UK Biobank study.
2型糖尿病,生活方式,代谢健康和心血管疾病的多基因风险:前瞻性英国生物库研究。
- DOI:10.1186/s12933-022-01560-2
- 发表时间:2022-07-14
- 期刊:
- 影响因子:9.3
- 作者:
- 通讯作者:
Genome-wide polygenic risk scores for hypertensive disease during pregnancy can also predict the risk for long-term cardiovascular disease.
妊娠期高血压疾病的全基因组多基因风险评分也可以预测长期心血管疾病的风险。
- DOI:10.1016/j.ajog.2023.03.013
- 发表时间:2023
- 期刊:
- 影响因子:9.8
- 作者:Lee,SeungMi;Shivakumar,Manu;Xiao,Brenda;Jung,Sang-Hyuk;Nam,Yonghyun;Yun,Jae-Seung;Choe,EunKyung;Jung,YoungMi;Oh,Sohee;Park,JoongShin;Jun,JongKwan;Kim,Dokyoon
- 通讯作者:Kim,Dokyoon
Discovering comorbid diseases using an inter-disease interactivity network based on biobank-scale PheWAS data.
- DOI:10.1093/bioinformatics/btac822
- 发表时间:2023-01-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Network-Based Analysis of Disease Complication Associations for Obstetric Disorders in the UK Biobank.
- DOI:10.3390/jpm11121382
- 发表时间:2021-12-17
- 期刊:
- 影响因子:0
- 作者:Sriram V;Nam Y;Shivakumar M;Verma A;Jung SH;Lee SM;Kim D
- 通讯作者:Kim D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10175930 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9287487 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Collaborative R&D