Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction

阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍

基本信息

  • 批准号:
    10489810
  • 负责人:
  • 金额:
    $ 52.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Abstract One of the most pressing questions in the study of Alzheimer’s disease (AD) and related dementias (ADRD) is how alterations in the amino-acid sequence of tau, along with post-translational modifications (PTMs) such as phosphorylation and cleavage, lead the protein to misfold and disrupt normal neuronal function. While much has been learned over decades of rigorous and focused research, there are currently no disease modifying therapies to treat AD or related tauopathies. Recently, the field has begun a complicated but promising shift from targeting large tau fibrils (e.g. PHFs and NFTs) to disrupting smaller, non-fibrillar tau oligomers. While late-stage tau fibrils have been studied extensively—including a flurry of recent high-resolution cryo- EM structures—there are few tools to study early-stage oligomers, especially in cells. As a result, almost nothing is known about 1) early misfolding events that produce toxic, non-fibrillar tau oligomers; nor 2) how these oligomers co-opt protein machinery to cause cellular distress. To begin to fill this void, our 2019 Alzheimer’s & Dementia paper established a set of high-resolution, lifetime-FRET based biosensors that monitor full-length tau oligomers in cells. Here, we present compelling preliminary data showing that these biosensors can delineate which folding motifs in the fibril structures, as well as PTMs, most affect early-stage tau oligomers. These biosensors have also enabled us to study two distinct pathological tau interactions in cells. First, co- Investigators Karen Ashe and Kathryn Nelson’s 2016 Nature Medicine paper showed that cleavage of tau by caspase-2 (Casp2) causes tau to mislocalize to dendritic spines, shut down AMPA receptors and promote cognitive defects in mice. We show intriguing evidence to suggest a complex feedback loop between cleavage, oligomerization and toxicity. Second, tau and alpha-Synuclein (aSyn) have well-known co-morbidity in multiple Alzheimer’s Disease related dementias, but the biophysics of their interaction in early-stage misfolding is poorly understood. We provide preliminary evidence of a preferred binding orientation between tau and aSyn, suggesting a stable and hence targetable binding motif. The two major goals of this proposal are to: 1) determine which structural motifs revealed in the available tau fibril structures, and which PTMs, contribute most to early-stage oligomerization in cells, and to pathology; and 2) to characterize and inhibit two pathogenic tau interactions: tau/Casp2 and tau/aSyn. In Aim 1, we analyze the recently available fibril structures and ask: how can these structures be used to unravel otherwise elusive structural details of non-fibrillar tau oligomers? Additionally, to deepen the impact of our investigations, and with the help of co-Investigator Shauna Yuan, we will develop new lines of iPSC-derived human cortical dopaminergic neurons expressing our biosensors. Then, in Aims 2 and 3, we study the biophysical interplay between tau oligomerization and toxicity of tau/Casp2 and tau/aSyn respectively. In each case, we will also perform high- throughput small-molecule screens to identify potent inhibitors of these two pathological, oligomeric assemblies.
摘要 阿尔茨海默病(AD)和相关痴呆(ADRD)研究中最紧迫的问题之一 是如何改变tau的氨基酸序列,以及翻译后修饰(PTM),如 磷酸化和切割,导致蛋白质错误折叠,扰乱正常的神经元功能。虽然很多人都有 经过几十年的严格和专注的研究,目前还没有改变疾病的疗法 用于治疗AD或相关的肌萎缩侧索硬化症。最近,该领域开始了一场复杂但有希望的转变,从目标转向 从大的tau纤维(如PHF和NFT)到破坏较小的非纤维tau低聚物。 虽然已经对晚期的tau原纤维进行了广泛的研究--包括最近一系列高分辨率的冷冻-- EM结构-几乎没有工具来研究早期低聚物,特别是细胞中的低聚物。结果,几乎什么都没有 已知的是1)产生有毒的非纤维状tau寡聚体的早期错误折叠事件;或者2)这些 寡聚体利用蛋白质机制来造成细胞痛苦。为了开始填补这一空白,我们的2019年阿尔茨海默氏症 痴呆症的一篇论文建立了一套基于高分辨率、终身FRET的生物传感器,用于监测全长tau 细胞中的低聚物。在这里,我们提出了令人信服的初步数据,表明这些生物传感器可以描绘出 纤维结构中的哪些折叠基序以及PTM对早期tau寡聚体的影响最大。 这些生物传感器还使我们能够研究细胞中两种不同的病理tau相互作用。首先,共同- 研究人员凯伦·阿什和凯瑟琳·纳尔逊在2016年的《自然医学》论文中显示,tau被 Caspase-2(Caspase-2)导致tau错误定位于树突棘,关闭AMPA受体并促进 小鼠的认知缺陷。我们展示了耐人寻味的证据,表明卵裂和卵裂之间存在复杂的反馈循环, 齐聚和毒性。其次,tau和α-突触核蛋白(ASyn)在多发性疾病中有众所周知的共同发病。 阿尔茨海默病相关痴呆,但它们在早期折叠错误中相互作用的生物物理学很差 明白了。我们提供了tau和aSyn之间优先结合取向的初步证据, 暗示了一个稳定的、因此具有靶向性的结合基序。 这项建议的两个主要目标是:1)确定在可用tau中揭示的结构基序 纤维结构,以及其中的PTM,对细胞的早期齐聚作用和病理学贡献最大; 2)研究和抑制两种致病的tau相互作用:tau/Casp2和tau/aSyn。在目标1中,我们分析了 最近可用的纤维结构,并问:这些结构如何才能用来解开否则难以捉摸的 非纤维状tau齐聚物的结构细节?此外,为了加深我们调查的影响,并与 在合作研究员袁少娜的帮助下,我们将开发新的IPSC来源的人类皮质多巴胺能 表达我们生物传感器的神经元。然后,在目标2和目标3中,我们研究了tau之间的生物物理相互作用。 Tau/Casp2和tau/aSyn的齐聚和毒性。在每一种情况下,我们也将执行高- 通过小分子筛选来确定这两种病理性低聚体组装的有效抑制物。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proteasomal Stimulation by MK886 and Its Derivatives Can Rescue Tau-Induced Neurite Pathology.
  • DOI:
    10.1007/s12035-023-03417-5
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Liao, Elly E.;Yang, Mu;Kochen, Noah Nathan;Vunnam, Nagamani;Braun, Anthony R.;Ferguson, David M.;Sachs, Jonathan N.
  • 通讯作者:
    Sachs, Jonathan N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan N Sachs其他文献

Jonathan N Sachs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan N Sachs', 18)}}的其他基金

Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
  • 批准号:
    10461322
  • 财政年份:
    2021
  • 资助金额:
    $ 52.94万
  • 项目类别:
How alpha-Synuclein misfolding promotes tau pathology in ADRD
α-突触核蛋白错误折叠如何促进 ADRD 中的 tau 病理学
  • 批准号:
    10285807
  • 财政年份:
    2021
  • 资助金额:
    $ 52.94万
  • 项目类别:
Exploiting New Fibril Structures to Understand the Biophysical Basis for Oligomerization and Toxicity of Alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚化和毒性的生物物理基础
  • 批准号:
    10684133
  • 财政年份:
    2020
  • 资助金额:
    $ 52.94万
  • 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
  • 批准号:
    10468800
  • 财政年份:
    2020
  • 资助金额:
    $ 52.94万
  • 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
  • 批准号:
    10042689
  • 财政年份:
    2020
  • 资助金额:
    $ 52.94万
  • 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
  • 批准号:
    10267686
  • 财政年份:
    2020
  • 资助金额:
    $ 52.94万
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10178044
  • 财政年份:
    2019
  • 资助金额:
    $ 52.94万
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10594464
  • 财政年份:
    2019
  • 资助金额:
    $ 52.94万
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10379462
  • 财政年份:
    2019
  • 资助金额:
    $ 52.94万
  • 项目类别:
Understanding and targeting the Methionine-Aromatic motif in oxidized alpha-Synuclein
了解和靶向氧化 α-突触核蛋白中的甲硫氨酸-芳香族基序
  • 批准号:
    9791033
  • 财政年份:
    2018
  • 资助金额:
    $ 52.94万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了