Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
基本信息
- 批准号:10176530
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-10 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibodiesArchitectureBenchmarkingBiologicalBrainCellsCellular StructuresChemistryCiliaCleaved cellCrowdingCultured CellsDNADevelopmentDiseaseDyesElectron MicroscopyElectrostaticsFaceGelGenomeHybridsImageImaging TechniquesImaging technologyIsotropyLeadLightMechanicsMentorsMethodologyMethodsMicroscopeMicroscopyMusNucleic AcidsNucleosomesOpticsOutcomePathologicPhasePlayPolymer ChemistryPolymersProcessProteinsProteomicsRNAReagentResearchResolutionRoleSamplingSignal TransductionSpecimenSpeedStructureSubcellular structureSynapsesSynaptic TransmissionSystemTechniquesTechnologyThickTissuesTranscriptional RegulationValidationWorkbasebiological systemsbrain tissuecell typecomplex biological systemsdiffraction of lightexperimental studyimprovedinsightmaterials sciencemechanical forcenanonanoscaleprotein complexreconstructiontechnology validationtranscriptome
项目摘要
Abstract
Understanding the nanoscale organizations of biomolecules in complex biological systems such as the brain, can not only
provide fundamental biological insights but also help in the discovery of new targets and technologies for treating
diseases. Optical microscopy provides a convenient way for imaging biological samples using readily available
dyes/antibodies. However, the spatial resolution of conventional optical microscopes is limited to 300 nm due to the
diffraction of light waves. On the other hand, existing super-resolution optical techniques, face challenges in scalability to
thick tissues and require extremely expensive hardware, which limits their application. Recently discovered expansion
microscopy (ExM), which is based on physically expanding the sample (embedded in a swellable gel) by about 4.5 x and
thus, achieving an effective resolution of 70 nm, is scalable and compatible with conventional optical hardware. But, its
resolution of 70 nm is not sufficient for observing subcellular structures. Though the resolution can be improved through
iterated ExM (iExM), it results in low biomolecular yield as it requires transfer of biomolecules from one gel to another,
with the cleaving of the first gel. The proposed work aims to develop a technology for expansion, where gel cleaving or
transfer of biomolecules is not required, resulting in high biomolecular yields. This technology utilizes both electrostatic
and mechanical forces for expansion to achieve high expansion factors (20x to 100x), thus leading to 300 / 20 ≈ 15 nm to
300 / 100 ≈ 3 nm resolution. This technology, which I termed non-cleaved electro-mechanical expansion (NEME) is
different from previous expansion technologies which utilizes only electrostatic forces for expansion. The mentored phase
of the proposed work will involve the development and characterization of the NEME technology while in the
independent phase, NEME will be extended for imaging of dense protein complexes as well as RNA and DNA. NEME
technology can lead to super-resolution imaging without any specialized or expensive hardware and can also provide high
biomolecular yields and scalability to thick tissues. Thus, it can greatly benefit simultaneous characterization of super-fine
biomolecular structures and large 3D biological systems.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deblina Sarkar其他文献
Deblina Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deblina Sarkar', 18)}}的其他基金
Circulatronics: A New Paradigm for Biomedical Implants
循环电子学:生物医学植入物的新范式
- 批准号:
10472942 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10516902 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10676270 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10424488 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: