Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
基本信息
- 批准号:10424488
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibodiesArchitectureBenchmarkingBiologicalBrainCellsCellular StructuresChemistryCiliaCrowdingCultured CellsDNADevelopmentDiseaseDyesElectron MicroscopyElectrostaticsFaceGelGenomeHybridsImageImaging TechniquesImaging technologyIsotropyLeadLightMechanicsMentorsMethodologyMethodsMicroscopeMicroscopyMusNucleic AcidsNucleosomesOpticsOutcomePathologicPhasePlayPolymer ChemistryPolymersProcessProteinsProteomicsRNAReagentResearchResolutionRoleSamplingSignal TransductionSpecimenSpeedStructureSubcellular structureSynapsesSynaptic TransmissionSystemTechniquesTechnologyThickTissuesTranscriptional RegulationValidationWorkbasebiological systemsbrain tissuecell typecomplex biological systemsdiffraction of lightexperimental studyimprovedinsightmaterials sciencemechanical forcenanonanoscaleprotein complexreconstructiontechnology validationtranscriptome
项目摘要
Abstract
Understanding the nanoscale organizations of biomolecules in complex biological systems such as the brain, can not only
provide fundamental biological insights but also help in the discovery of new targets and technologies for treating
diseases. Optical microscopy provides a convenient way for imaging biological samples using readily available
dyes/antibodies. However, the spatial resolution of conventional optical microscopes is limited to 300 nm due to the
diffraction of light waves. On the other hand, existing super-resolution optical techniques, face challenges in scalability to
thick tissues and require extremely expensive hardware, which limits their application. Recently discovered expansion
microscopy (ExM), which is based on physically expanding the sample (embedded in a swellable gel) by about 4.5 x and
thus, achieving an effective resolution of 70 nm, is scalable and compatible with conventional optical hardware. But, its
resolution of 70 nm is not sufficient for observing subcellular structures. Though the resolution can be improved through
iterated ExM (iExM), it results in low biomolecular yield as it requires transfer of biomolecules from one gel to another,
with the cleaving of the first gel. The proposed work aims to develop a technology for expansion, where gel cleaving or
transfer of biomolecules is not required, resulting in high biomolecular yields. This technology utilizes both electrostatic
and mechanical forces for expansion to achieve high expansion factors (20x to 100x), thus leading to 300 / 20 ≈ 15 nm to
300 / 100 ≈ 3 nm resolution. This technology, which I termed non-cleaved electro-mechanical expansion (NEME) is
different from previous expansion technologies which utilizes only electrostatic forces for expansion. The mentored phase
of the proposed work will involve the development and characterization of the NEME technology while in the
independent phase, NEME will be extended for imaging of dense protein complexes as well as RNA and DNA. NEME
technology can lead to super-resolution imaging without any specialized or expensive hardware and can also provide high
biomolecular yields and scalability to thick tissues. Thus, it can greatly benefit simultaneous characterization of super-fine
biomolecular structures and large 3D biological systems.
摘要
了解脑等复杂生物系统中生物分子的纳米级组织不仅可以
提供基本的生物学见解,但也有助于发现治疗的新靶点和技术
疾病。光学显微镜为使用现成的生物样品成像提供了一种方便的方法
染料/抗体。然而,传统光学显微镜的空间分辨率被限制在300纳米,这是由于
光波的绕射。另一方面,现有的超分辨率光学技术在可伸缩性方面面临挑战
厚厚的组织,需要极其昂贵的硬件,这限制了它们的应用。最近发现的扩展
显微镜(EXM),这是基于将样品(嵌入在可膨胀的凝胶中)物理膨胀约4.5倍和
因此,获得70 nm的有效分辨率是可扩展的,并且与传统的光学硬件兼容。但是,它的
70纳米的分辨率不足以观察亚细胞结构。虽然分辨率可以通过以下方式提高
重复exm(IExM),它导致低生物分子产率,因为它需要将生物分子从一种凝胶转移到另一种凝胶,
随着第一个凝胶的裂解。拟议中的工作旨在开发一种膨胀技术,在这种技术中,凝胶裂解或
不需要生物分子的转移,从而产生高生物分子产率。这项技术利用了静电和
和机械力的膨胀,以实现高膨胀系数(20x到100x),从而导致300/20≈15 nm到
300/100≈3 nm分辨率。这项我称之为无劈裂机电膨胀(NEME)的技术
不同于以往仅利用静电力进行膨胀的膨胀技术。指导阶段
拟议工作的一部分将涉及Neme技术的开发和表征,而在
作为一种独立的相,Neme将被扩展到高密度蛋白质复合体以及RNA和DNA的成像。Neme
技术可以在不需要任何专门或昂贵的硬件的情况下实现超分辨率成像,并且还可以提供高分辨率
生物分子产量和对厚组织的可扩展性。因此,它将极大地有利于超细颗粒的同时表征
生物分子结构和大型三维生物系统。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell Rover-a miniaturized magnetostrictive antenna for wireless operation inside living cells.
- DOI:10.1038/s41467-022-32862-4
- 发表时间:2022-09-22
- 期刊:
- 影响因子:16.6
- 作者:Joy, Baju;Cai, Yubin;Bono, David C.;Sarkar, Deblina
- 通讯作者:Sarkar, Deblina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deblina Sarkar其他文献
Deblina Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deblina Sarkar', 18)}}的其他基金
Circulatronics: A New Paradigm for Biomedical Implants
循环电子学:生物医学植入物的新范式
- 批准号:
10472942 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10516902 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10676270 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10176530 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: