A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
基本信息
- 批准号:10676270
- 负责人:
- 金额:$ 23.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAction PotentialsAdverse effectsAlzheimer&aposs DiseaseAreaAxonBehaviorBiologicalBrainBrain DiseasesCell membraneCellsCephalicChronicConfocal MicroscopyCouplingDendritesDevelopmentDevicesDiffuseDimensionsDisadvantagedElectrodesElectron MicroscopyElectronicsEngineeringEnvironmentEquipment MalfunctionFaceFiberFilmForeign-Body ReactionFutureGenerationsGeneticGoalsImmune systemImplantImplantation procedureIndividualInflammatory ResponseInjectableLearningLightLightingMagnetismMembraneMemoryMicroelectrodesModalityModernizationModificationMolecularNamesNerve RegenerationNeurologicNeuronal PlasticityNeuronsNeurosciencesNeurosciences ResearchOpticsOutcomeParkinson DiseasePatternPenetrationPerformancePeripheral Nervous SystemPhysiologic pulsePolymersProceduresPsychological reinforcementRecoveryResolutionSourceStimulusStructureSurfaceSymbiosisSynapsesSystemTechniquesTechnologyTherapeuticThickThinnessTissuesTransducersTubeazobenzenebiomaterial compatibilitybrain machine interfacedesignexperienceexperimental studyextracellularfabricationimprovedinnovationlearning materialsmaterials sciencemembermigrationminimally invasivemulti-electrode arraysnanonanodevicenanoelectronicsnanofabricationnanoparticlenanopolymernervous system disorderneuralneural implantneural networkneural stimulationneuroprosthesisneuroregulationneurotoxicitynext generationnon-geneticnovelnovel therapeuticsoptogeneticspatch clampsealspatiotemporalsuccesssynergismtemporal measurementwirelesswireless electronic
项目摘要
Implantable interfaces for neuromodulation is necessary to advance fundamental neuroscience research,
develop new treatments for neurological disorders, and create efficient breakthrough neuroprosthetics.
However, modern implants based on multi-electrode arrays suffer from low spatial resolution, high
invasiveness with complicated implantable procedures, the need for a chronic opening for connecting wires,
and substantial foreign body reaction, eventually leading to device failure. On the other hand, various groups
have developed nanoparticles-based transducers that can wirelessly modulate neurons with high precision
when actuated with external stimuli. Nevertheless, nanoparticles hold several disadvantages due to their small
size (resulting in neurotoxicity, migration, aggregation, etc.), restricted fabrication procedures, and limited
design or integration opportunities. Hence, minimally invasive and non-genetic technology that can enable
wireless neuromodulation with high spatio-temporal resolution and stable interface remains an unmet goal
till date.
Therefore, we propose to develop an innovative thin-film-based structure able to wirelessly influence the
neuronal membrane to induce or inhibit action potential propagation along a specific path of connected
neurons. These devices will be designed and produced with subcellular dimensions to be injected into the
neural tissue, diffuse, and wrap around axons and dendrites (creating conformable and stable neural
interface); hence, they are named nanoCUFFs. The nanoCUFFs will be composed of two types of polymers:
i) an azobenzene polymer for photo-induced reconfiguration of thin films rolled into microtubes,
accommodating single axons; and ii) a semiconducting polymer for transduction of light pulses into stimuli
for neuronal opto-modulation. Polymers allow creating soft, biocompatible, and conformable structures for
a minimal mismatch and maximal coupling with the biological tissue. Once the nanoCUFFs are produced
and characterized, we will verify their wrapping capabilities around axons and dendrites, neuromodulation
efficiencies as well as ability to influence distinct selected subpopulations of neurons (using micro-patterned
light) in neural cultures.
The ability to engineer the nanoCUFFs’ material composition and photo-induced effects on a thin-film
platform favors the future integration of nanoelectronics components for additional functionalities. For
instance, multiplexing and sensing devices could be developed for smart closed-loop neuromodulation. This
technology can simultaneously achieve ultra-low invasiveness, high-spatio-temporal precision, selectivity
and stable junction with cells and thus, is highly promising for not only fundamental neuroscience but also
novel therapeutics.
用于神经调节的植入式接口对于推进基础神经科学研究是必要的,
开发神经系统疾病的新疗法,并创造有效的突破性神经修复术。
然而,基于多电极阵列的现代植入物遭受低空间分辨率、高分辨率、高分辨率和高分辨率的缺点。
复杂的可植入手术的侵入性,需要长期开口用于连接导线,
以及大量的异物反应,最终导致装置失效。另一方面,各种团体
已经开发出基于纳米颗粒的传感器,可以高精度地无线调制神经元
当受到外部刺激时。然而,纳米颗粒由于它们的小尺寸而具有若干缺点。
尺寸(导致神经毒性、迁移、聚集等),有限的制造程序和有限的
设计或整合机会。因此,微创和非基因技术,可以使
具有高时空分辨率和稳定接口的无线神经调制仍然是未满足的目标
直到约会。
因此,我们建议开发一种创新的基于薄膜的结构,能够无线地影响
沿着特定的连接路径诱导或抑制动作电位传播
神经元这些装置将被设计和生产为具有亚细胞尺寸,以被注射到
神经组织,扩散,并包裹轴突和树突(产生整合和稳定的神经
接口);因此,它们被命名为nanoCUFF。nanoCUFF将由两种类型的聚合物组成:
i)用于卷绕成微管的薄膜的光诱导重构的偶氮苯聚合物,
容纳单个轴突;和ii)用于将光脉冲转换成刺激的半导体聚合物
用于神经元光调制。聚合物允许产生柔软的、生物相容的和适形的结构,
与生物组织的最小失配和最大耦合。一旦生产出nanoCUFF,
并进行表征,我们将验证它们在轴突和树突周围的包裹能力,神经调节,
效率以及影响不同选择的神经元亚群的能力(使用微图案化的
光)在神经培养物中。
设计nanoCUFF的材料成分和薄膜上的光致效应的能力
该平台有利于未来集成纳米电子组件以实现附加功能。为
例如,可以开发多路复用和传感设备用于智能闭环神经调节。这
技术可以同时实现超低侵入性、高时空精度、选择性
和稳定的细胞连接,因此,不仅对基础神经科学,
新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deblina Sarkar其他文献
Deblina Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deblina Sarkar', 18)}}的其他基金
Circulatronics: A New Paradigm for Biomedical Implants
循环电子学:生物医学植入物的新范式
- 批准号:
10472942 - 财政年份:2022
- 资助金额:
$ 23.27万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10516902 - 财政年份:2022
- 资助金额:
$ 23.27万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10424488 - 财政年份:2018
- 资助金额:
$ 23.27万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10176530 - 财政年份:2018
- 资助金额:
$ 23.27万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 23.27万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant