Circulatronics: A New Paradigm for Biomedical Implants

循环电子学:生物医学植入物的新范式

基本信息

  • 批准号:
    10472942
  • 负责人:
  • 金额:
    $ 143.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Modified Project Summary Section Bioelectronic implants provide a versatile platform for diagnosis, therapeutics as well as basic research but require invasive surgery. Here, we propose a paradigm shift: the ‘Circulatronics’ technology, wherein ultra-small bioelectronic devices target desired regions in the body for sensing and treatment, without the need for surgery. Its realization requires: i> nanoelectronic devices that are aggressively miniaturized (to fit inside vasculature) and extremely low power (to work deep inside body with low harvested energy); ii> heterogeneous integration of power-source and nanoelectronic circuits in a single device platform; iii> targeting the diseased regions for implantation without surgery. Accomplishing these requires innovations in diverse fields of applied physics, nanoelectronics and bioengineering and we are uniquely enabled due to our expertise in not only physics and solid-state nanoelectronic devices but also in bioelectronics, synthetic biology and neural engineering. We will build upon our work in developing ultra-scalable and record-low power nanoelectronics, which can lead to beyond-Silicon dimensional scalability to achieve i) and create sub-cellular sized and highly energy-efficient nanoelectronic devices. Moreover, we will leverage our research in building novel van der Waals heterostructures employing heterogeneous material systems enabled by atomically thin 2D materials to accomplish ii). For achieving iii), we will explore different surface functionalization techniques and leverage our expertise in synthetic biology. Circulatronics is a radical technology which can change the landscape of the field of biomedical implants and transform bioelectronic medicine. By alleviating surgery, it not only offers ultra-low invasiveness but can extend healthcare to patients not suited for surgery. These devices can modulate biological signals and can also integrate sensing functionalities. Since they can reach every nook and cranny of the body, they can obtain information from and treat intricate regions in body, which cannot be accessed by other technologies. Moreover, being extremely small, they can interact at a single cell or even subcellular level, to provide highly precise diagnosis and therapeutics as well as fundamental insights into biology.
修改后的项目摘要部分 生物电子植入物为诊断、治疗和基础研究提供了一个多功能平台,但需要侵入性手术。在这里,我们提出了一种范式转变:“循环电子”技术,其中超小型生物电子设备针对身体中的所需区域进行传感和治疗,而无需手术。 实现这一目标需要:i>积极小型化(以适合脉管系统内)和极低功率(以在体内深处以低收集能量工作)的纳米电子装置; ii>在单个装置平台中异质集成电源和纳米电子电路; iii>靶向患病区域以用于植入而无需手术。实现这些目标需要在应用物理学,纳米电子学和生物工程的各个领域进行创新,我们不仅在物理学和固态纳米电子器件方面,而且在生物电子学,合成生物学和神经工程方面拥有独特的专业知识。我们将在开发超可扩展和创纪录低功耗纳米电子学的工作基础上再接再厉,这可以导致超越硅尺寸的可扩展性,以实现i)并创建亚细胞尺寸和高能效的纳米电子器件。此外,我们将利用我们的研究,在建设新的货车德瓦尔斯异质结构采用异质材料系统,使原子薄的二维材料,以实现ii)。为了实现iii),我们将探索不同的表面功能化技术,并利用我们在合成生物学方面的专业知识。 Circulatronics是一项可以改变生物医学植入物领域的景观并改变生物电子医学的根本技术。通过减轻手术,它不仅提供了超低的侵入性,而且可以将医疗保健扩展到不适合手术的患者。这些设备可以调节生物信号,也可以集成传感功能。由于它们可以到达身体的每一个角落和缝隙,它们可以从其他技术无法访问的身体复杂区域获取信息并进行治疗。此外,由于非常小,它们可以在单细胞甚至亚细胞水平上相互作用,以提供高度精确的诊断和治疗以及对生物学的基本见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deblina Sarkar其他文献

Deblina Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deblina Sarkar', 18)}}的其他基金

A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
  • 批准号:
    10516902
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
  • 批准号:
    10676270
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
  • 批准号:
    10424488
  • 财政年份:
    2018
  • 资助金额:
    $ 143.1万
  • 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
  • 批准号:
    10176530
  • 财政年份:
    2018
  • 资助金额:
    $ 143.1万
  • 项目类别:

相似海外基金

Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
  • 批准号:
    571519-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
  • 批准号:
    2735213
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
  • 批准号:
    2209217
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
  • 批准号:
    2242530
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Standard Grant
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
  • 批准号:
    RGPIN-2019-07002
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Discovery Grants Program - Individual
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
  • 批准号:
    RGPIN-2021-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
  • 批准号:
    BB/V01577X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
  • 批准号:
    2010698
  • 财政年份:
    2021
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
  • 批准号:
    RGPIN-2019-07002
  • 财政年份:
    2021
  • 资助金额:
    $ 143.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了