Establishing a Brain Health Index from the Sleep Electroencephalogram
从睡眠脑电图建立大脑健康指数
基本信息
- 批准号:10180268
- 负责人:
- 金额:$ 150.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:20 year oldAddressAgeAgingAlzheimer&aposs DiseaseAmyloidAmyloid beta-ProteinArchivesArousalBiologicalBiological MarkersBiological ProcessBrainBrain DiseasesBrain PathologyCerebrumChronicChronologyClaustral structureClinicalClinical TrialsCognitiveCognitive agingCognitive deficitsComplexDataDementiaDevicesDiabetes MellitusDiseaseDrainage procedureEarly DiagnosisElectroencephalogramEpidemiologyExhibitsFramingham Heart StudyGeneral HospitalsGenomeGoalsHIVHIV InfectionsHealthHeartHippocampus (Brain)HomeHypertensionImpaired cognitionIndividualInterventionIsraelKnowledgeKoreansLife ExpectancyLinkLungMachine LearningMagnetic Resonance ImagingMassachusettsMeasurableMeasuresMedialMedical centerMemoryModelingMotivationNerve DegenerationNeurodegenerative DisordersNeurologicNeuropsychological TestsNeuropsychologyOutcomePathologyPatient CarePatientsPatternPhysiologicalPlayPopulationPositron-Emission TomographyPrefrontal CortexProcessPropertyREM SleepReportingResearchRiskRoleScienceSeriesSignal TransductionSleepSleep Apnea SyndromesSleep StagesSleep disturbancesSmokerStatistical ModelsStructureSystemTest ResultTestingThickThinnessTimeVariantWorkage relatedaging brainbasal forebrainbasebrain healthcognitive functioncognitive performancecognitive testingcohortdeep neural networkepidemiology studyexecutive functionfunctional lossglymphatic systemhealthy aginghigh riskindexingindividual patientlarge datasetsmachine learning algorithmmemory consolidationmild cognitive impairmentmodel developmentmortalitymulti-task learningneuroimagingneuropathologynon rapid eye movementnovelnovel therapeuticspredictive modelingsleep physiologysleep spindlespecific biomarkerstherapy development
项目摘要
Project Abstract: Establishing a Brain Health Index from the Sleep Electroencephalogram
Although cognitive decline is a “normal” part of aging, some individuals clearly age better than others.
However, the concept of differential aging has been minimally studied for the brain.
Electroencephalogram (EEG) oscillations signals carry rich information regarding brain health and brain aging.
Alzheimer's disease (AD) is associated with fragmented sleep and altered sleep oscillations. Clearance of
cerebral beta amyloid through the brain's glymphatic drainage system occurs mainly in non-rapid eye
movement (NREM) sleep, and depends on EEG slow oscillations. Cortical generators of sleep EEG
oscillations overlap with regions of cortical thinning and loss of functional connectivity in AD. Disturbances of
NREM disrupt memory consolidation. Finally, deficient REM sleep contributes to dementia. These observations
suggest that brain health may be measurable from information contained in the sleep EEG.
In preliminary work we have developed EEG-brain age – a machine learning model that predicts a patient's
age based on patterns of overnight sleeping EEG oscillations. This allows prediction of age with a precision of
+/- 7 years. Our preliminary data suggest diabetes and hypertension, chronic HIV infection, an MCI or AD are
reflected in the EEG as excessive brain age, and that excessive brain age is independently associated with
reduced life expectancy.
Our central hypothesis is that sleep physiology data can provide sensitive and specific biomarkers of brain
health. This hypothesis is based on our prior work showing that BAI is elevated in several clinical populations.
BAI can be accurately calculated using frontal EEG signals, making it suitable for implementation on at-home
EEG devices. The rationale for the proposed research is that validating sleep EEG-derived biomarkers as
measures of brain health at the level of individual patients would lay the ground for use in clinical trials and
patient care. We plan to accomplish the central objective by pursuing two complementary aims. In Aim 1, we
will take a hypothesis-driven approach, and test for associations of specific sleep features with specific
cognitive deficits and specific structural pathology. In Aim 2, we will take ad data-driven approach, and develop
optimized biomarkers of brain health using a novel form of machine learning known as multitask learning,
which combine multiple features of sleep – including conventional features, as well as data-driven features
directly learned from the data – to predict or “explain” variation in cognitive performance and in structural brain
MRI measures that are indicative of brain health or disease. The project will take advantage of a large and
diverse set of sleep data (>33,000 patients), as well as thousands of brain MRI and cognitive testing results.
At the conclusion of this study, we expect to have a better understanding of the role sleep oscillations play in
brain health, and clinically useful brain health biomarkers. These outcomes will aid development of
interventions to promote brain health.
项目摘要:从睡眠脑电建立脑健康指数
虽然认知能力下降是衰老的“正常”部分,但一些人显然比其他人更容易变老。
然而,对大脑的差异衰老概念的研究还很少。
脑电(EEG)振荡信号携带着丰富的有关脑健康和脑老化的信息。
阿尔茨海默病(AD)与零碎的睡眠和改变的睡眠振荡有关。净空
大脑β淀粉样蛋白通过大脑的淋巴引流系统主要发生在非快眼
运动(NREM)睡眠,并依赖于脑电的缓慢振荡。睡眠脑电的大脑皮层发生器
在AD中,振荡与皮质变薄和功能连接丧失的区域重叠。扰乱
NREM破坏了记忆的巩固。最后,缺乏快速眼动睡眠会导致痴呆症。这些观察结果
这表明,大脑健康状况可能可以从睡眠脑电中包含的信息来衡量。
在前期工作中,我们开发了EEG-Brain AGE-一种机器学习模型,可以预测患者的
基于夜间睡眠脑电振荡模式的年龄。这使得对年龄的预测可以达到
+/-7年。我们的初步数据表明,糖尿病和高血压、慢性艾滋病毒感染、MCI或AD
在脑电中反映为大脑年龄过大,而大脑年龄过大独立地与
减少了预期寿命。
我们的中心假设是,睡眠生理学数据可以为大脑提供敏感和特异的生物标志物
健康。这一假设是基于我们之前的工作,表明BAI在几个临床人群中都是升高的。
利用额部脑电信号可以准确计算出BAI,因此适合在家中实施
脑电波设备。这项拟议研究的基本原理是,将睡眠脑电衍生的生物标志物确认为
在个体患者水平上衡量大脑健康状况将为临床试验和
病人护理。我们计划通过追求两个相辅相成的目标来实现这一中心目标。在目标1中,我们
将采取假设驱动的方法,并测试特定睡眠特征与特定睡眠特征之间的关联
认知缺陷和特定的结构病理学。在目标2中,我们将采取广告数据驱动的方法,并开发
使用一种名为多任务学习的新机器学习形式来优化大脑健康的生物标记物,
它们结合了睡眠的多个特征--包括常规特征以及数据驱动特征
直接从数据中学习--预测或“解释”认知表现和大脑结构的变化
核磁共振测量表明大脑健康或疾病。该项目将利用一个大型和
不同的睡眠数据集(33,000名患者),以及数千个大脑核磁共振和认知测试结果。
在这项研究的结论中,我们希望能更好地理解睡眠振荡在
脑健康,以及临床上有用的脑健康生物标志物。这些成果将有助于
促进大脑健康的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SYDNEY S CASH其他文献
SYDNEY S CASH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SYDNEY S CASH', 18)}}的其他基金
256-channel Digital Neural Signal Processor Real-Time Data Acquisition System
256通道数字神经信号处理器实时数据采集系统
- 批准号:
10630883 - 财政年份:2023
- 资助金额:
$ 150.66万 - 项目类别:
Biophysical Mechanisms of Cortical MicroStimulation
皮质微刺激的生物物理机制
- 批准号:
10711723 - 财政年份:2023
- 资助金额:
$ 150.66万 - 项目类别:
Understanding the Fast and Slow Spatiotemporal Dynamics of Human Seizures
了解人类癫痫发作的快慢时空动态
- 批准号:
10584583 - 财政年份:2019
- 资助金额:
$ 150.66万 - 项目类别:
Understanding the fast and slow spatiotemporal dynamics of human seizures
了解人类癫痫发作的快慢时空动态
- 批准号:
10361503 - 财政年份:2019
- 资助金额:
$ 150.66万 - 项目类别:
CRCNS: Dynamic network analysis of human seizures for therapeutic intervention
CRCNS:人类癫痫发作的动态网络分析用于治疗干预
- 批准号:
9318585 - 财政年份:2015
- 资助金额:
$ 150.66万 - 项目类别:
Seizure focus delineation using spontaneous and stimulus evoked EEG features
使用自发和刺激诱发的脑电图特征描绘癫痫病灶
- 批准号:
8891148 - 财政年份:2015
- 资助金额:
$ 150.66万 - 项目类别:
CRCNS: Dynamic network analysis of human seizures for therapeutic intervention
CRCNS:人类癫痫发作的动态网络分析用于治疗干预
- 批准号:
9116972 - 财政年份:2015
- 资助金额:
$ 150.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 150.66万 - 项目类别:
Research Grant














{{item.name}}会员




