Employing biofilters to detect human pathogens in Mid-Atlantic US waters
使用生物过滤器检测美国大西洋中部水域的人类病原体
基本信息
- 批准号:10196293
- 负责人:
- 金额:$ 6.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Comparative StudyConsumptionDataDatabasesDevelopmentDiseaseDisease OutbreaksEcologyEnvironmentEnvironmental EpidemiologyEpidemiologyFarming environmentFutureGeneticGenomeGenomic SegmentGenomicsHarvestHealthHumanIndividualKnowledgeMethodologyMethodsMolecularOrganismOystersParasitesPathogenicityPlantsPopulationPublic HealthPublishingResearchResolutionResourcesSafetySamplingSeafoodSensitivity and SpecificitySourceSpatial DistributionTestingTissuesUnited StatesViralWatercoastal waterdesignepidemiology studyfood consumptionfood resourcehuman pathogenmolecular arraynovelpathogenpathogenic bacteriapathogenic virustooltransmission processwater quality
项目摘要
PROJECT SUMMARY
Throughout the United States, human populations in coastal zones have been steadily increasing.
Additionally, humans partake in many aquatic recreational activities and consume significant amounts
of seafood either farmed or harvested from coastal waters. All of these activities increase the diversity,
dispersal, and transmission potential of human pathogens. Unfortunately, knowledge of the
environmental epidemiology of human pathogens in coastal waters is limited. Tools capable of
generating high-resolution information are needed to determine the sources, connectivity, and spatial
distribution of these organisms in coastal environments. This project proposes the design, optimization,
and utilization of a set of in-solution sequence capture arrays to conduct targeted enrichment of viral and
bacterial human pathogens to determine their diversity, distribution, dispersal, and connectivity in
coastal waterways. Both capture arrays will utilize existing genomic resources to create the arrays,
which will include a mixture of shared and unique loci. Using a variety of conserved and variable loci
from these pathogens allows us to capture genomic regions useful for comparative studies across taxa
(shared loci) and for population genomic studies (unique loci) within taxa. The efficiency, sensitivity,
and specificity of the designed capture arrays will be assessed by testing these arrays on samples from
biofilters, which will be market-sized oysters deployed downstream from wastewater treatment
facilities. The data generated from this project will be used to conduct preliminary environmental
molecular epidemiological studies on these parasite taxa across spatial and temporal scales. This
information is critical for public health officials to make informed decisions about the health and safety
of humans using, living near, and consuming food resources from coastal waters.
项目摘要
在整个美国,沿海地区的人口一直在稳步增长。
此外,人类参与许多水上娱乐活动并消耗大量的水。
养殖或从沿海沃茨收获的海产品。所有这些活动都增加了多样性,
传播和传播人类病原体的可能性。不幸的是,
人类病原体在沿海沃茨的环境流行病学研究有限。工具能够
需要生成高分辨率信息来确定源、连通性和空间
这些生物在沿海环境中的分布。本项目提出了设计、优化、
以及利用一组溶液中序列捕获阵列进行病毒的靶向富集,
细菌人类病原体,以确定其多样性,分布,传播和连接,
沿海水道。两种捕获阵列都将利用现有的基因组资源来创建阵列,
其将包括共享和独特基因座的混合物。利用各种保守和可变的基因座
从这些病原体,使我们能够捕捉基因组区域有用的比较研究,
(共享基因座)和种群基因组研究(独特基因座)分类群内。效率,灵敏度,
设计的捕获阵列的特异性将通过在来自
生物过滤器,这将是市场规模的牡蛎部署在下游的废水处理
设施该项目产生的数据将用于进行初步的环境
这些寄生虫类群的分子流行病学研究跨越空间和时间尺度。这
信息对于公共卫生官员做出有关健康和安全的明智决策至关重要
指人类使用、生活在沿海沃茨附近并消耗沿海水域的食物资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katrina Lohan其他文献
Katrina Lohan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katrina Lohan', 18)}}的其他基金
Employing biofilters to detect human pathogens in Mid-Atlantic US waters
使用生物过滤器检测美国大西洋中部水域的人类病原体
- 批准号:
10491337 - 财政年份:2021
- 资助金额:
$ 6.73万 - 项目类别:
相似海外基金
Understanding of Consumption Context Using User Generated Big Data
使用用户生成的大数据了解消费环境
- 批准号:
23H00859 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trustworthy ML approaches to energy consumption data
值得信赖的能源消耗数据机器学习方法
- 批准号:
10068428 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Collaborative R&D
Inflation and Consumption in the Post-COVID Era: Empirical Analyses Based on Alternative Data
后疫情时代的通胀与消费:基于另类数据的实证分析
- 批准号:
23K12451 - 财政年份:2023
- 资助金额:
$ 6.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A scalable IoT solution utilising machine-learning to discover actionable insights to reduce energy/resource consumption utilising manufacturing process data.
可扩展的物联网解决方案,利用机器学习来发现可行的见解,从而利用制造过程数据来减少能源/资源消耗。
- 批准号:
10029064 - 财政年份:2022
- 资助金额:
$ 6.73万 - 项目类别:
Collaborative R&D
A scalable digital twin employing machine-learning to discover actionable insights to reduce emissions/resource consumption utilising shared portside data. (Portunus)
可扩展的数字孪生采用机器学习来发现可行的见解,以利用共享的港口数据减少排放/资源消耗。
- 批准号:
10043739 - 财政年份:2022
- 资助金额:
$ 6.73万 - 项目类别:
Grant for R&D
Data-driven Thermal Management of Electric/Hybrid Vehicles for Optimum Energy Consumption
数据驱动的电动/混合动力汽车热管理以实现最佳能源消耗
- 批准号:
2683123 - 财政年份:2022
- 资助金额:
$ 6.73万 - 项目类别:
Studentship
Digital Twin: innovative methods for the integration, analysis and consumption of multisensory data in Tactile Internet
数字孪生:触觉互联网中多感官数据集成、分析和消费的创新方法
- 批准号:
RGPIN-2018-05600 - 财政年份:2022
- 资助金额:
$ 6.73万 - 项目类别:
Discovery Grants Program - Individual
Utilizing novel data sets and prediction methods to better identify and engage with customers in vulnerable circumstances and encourage sustainable water consumption in the residential sector
利用新颖的数据集和预测方法更好地识别和吸引处于弱势的客户,并鼓励住宅领域的可持续用水
- 批准号:
10008785 - 财政年份:2021
- 资助金额:
$ 6.73万 - 项目类别:
Feasibility Studies
Empirical Analysis of Social Costs Caused By Product Defects Using Big Consumption Data
利用消费大数据实证分析产品缺陷造成的社会成本
- 批准号:
21H00710 - 财政年份:2021
- 资助金额:
$ 6.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2021
- 资助金额:
$ 6.73万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




