Employing biofilters to detect human pathogens in Mid-Atlantic US waters
使用生物过滤器检测美国大西洋中部水域的人类病原体
基本信息
- 批准号:10491337
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Comparative StudyConsumptionDataDatabasesDevelopmentDiseaseDisease OutbreaksEcologyEnvironmentEnvironmental EpidemiologyFarmFutureGeneticGenomeGenomic SegmentGenomicsHarvestHealthHumanIndividualKnowledgeMarketingMethodologyMethodsMolecularMolecular EpidemiologyOrganismOystersParasitesPathogenicityPlantsPopulationPublic HealthPublishingRecreationResearchResolutionSafetySamplingSeafoodSourceSpatial DistributionSpecificityTestingTissuesUnited StatesViralWatercoastal waterdesignepidemiology studyfood consumptionfood resourcegenome resourcehuman pathogenmolecular arraynovelpathogenpathogenic bacteriapathogenic virustooltransmission processwater quality
项目摘要
PROJECT SUMMARY
Throughout the United States, human populations in coastal zones have been steadily increasing.
Additionally, humans partake in many aquatic recreational activities and consume significant amounts
of seafood either farmed or harvested from coastal waters. All of these activities increase the diversity,
dispersal, and transmission potential of human pathogens. Unfortunately, knowledge of the
environmental epidemiology of human pathogens in coastal waters is limited. Tools capable of
generating high-resolution information are needed to determine the sources, connectivity, and spatial
distribution of these organisms in coastal environments. This project proposes the design, optimization,
and utilization of a set of in-solution sequence capture arrays to conduct targeted enrichment of viral and
bacterial human pathogens to determine their diversity, distribution, dispersal, and connectivity in
coastal waterways. Both capture arrays will utilize existing genomic resources to create the arrays,
which will include a mixture of shared and unique loci. Using a variety of conserved and variable loci
from these pathogens allows us to capture genomic regions useful for comparative studies across taxa
(shared loci) and for population genomic studies (unique loci) within taxa. The efficiency, sensitivity,
and specificity of the designed capture arrays will be assessed by testing these arrays on samples from
biofilters, which will be market-sized oysters deployed downstream from wastewater treatment
facilities. The data generated from this project will be used to conduct preliminary environmental
molecular epidemiological studies on these parasite taxa across spatial and temporal scales. This
information is critical for public health officials to make informed decisions about the health and safety
of humans using, living near, and consuming food resources from coastal waters.
项目总结
在整个美国,沿海地区的人口一直在稳步增长。
此外,人类参与了许多水上娱乐活动,并消耗了大量的水。
从沿海水域养殖或捕捞的海鲜。所有这些活动都增加了多样性,
人类病原体的传播和传播潜力。不幸的是,关于
沿海水域人类病原体的环境流行病学有限。具有以下功能的工具
需要生成高分辨率信息来确定源、连通性和空间
这些生物在沿海环境中的分布。本项目提出了设计、优化、
以及利用一组溶液中序列捕获阵列来进行病毒和
确定细菌人类病原体的多样性、分布、扩散和连通性
沿海航道。两个捕获阵列都将利用现有的基因组资源来创建阵列,
这将包括共享和唯一基因座的混合。使用各种保守和可变的基因座
使我们能够捕获对跨类群比较研究有用的基因组区域
(共享基因座)和类群内的种群基因组研究(独特基因座)。效率,敏感度,
设计的捕获阵列的特异度将通过在来自
生物过滤器,这将是市场大小的牡蛎部署在废水处理的下游
设施。该项目产生的数据将用于进行初步的环境保护
这些寄生虫分类群在空间和时间尺度上的分子流行病学研究。这
信息对于公共卫生官员做出关于健康和安全的明智决定至关重要
指人类使用、居住在附近和消耗沿海水域的食物资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katrina Lohan其他文献
Katrina Lohan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katrina Lohan', 18)}}的其他基金
Employing biofilters to detect human pathogens in Mid-Atlantic US waters
使用生物过滤器检测美国大西洋中部水域的人类病原体
- 批准号:
10196293 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
相似海外基金
Understanding of Consumption Context Using User Generated Big Data
使用用户生成的大数据了解消费环境
- 批准号:
23H00859 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trustworthy ML approaches to energy consumption data
值得信赖的能源消耗数据机器学习方法
- 批准号:
10068428 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative R&D
Inflation and Consumption in the Post-COVID Era: Empirical Analyses Based on Alternative Data
后疫情时代的通胀与消费:基于另类数据的实证分析
- 批准号:
23K12451 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A scalable IoT solution utilising machine-learning to discover actionable insights to reduce energy/resource consumption utilising manufacturing process data.
可扩展的物联网解决方案,利用机器学习来发现可行的见解,从而利用制造过程数据来减少能源/资源消耗。
- 批准号:
10029064 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative R&D
A scalable digital twin employing machine-learning to discover actionable insights to reduce emissions/resource consumption utilising shared portside data. (Portunus)
可扩展的数字孪生采用机器学习来发现可行的见解,以利用共享的港口数据减少排放/资源消耗。
- 批准号:
10043739 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Grant for R&D
Data-driven Thermal Management of Electric/Hybrid Vehicles for Optimum Energy Consumption
数据驱动的电动/混合动力汽车热管理以实现最佳能源消耗
- 批准号:
2683123 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Studentship
Digital Twin: innovative methods for the integration, analysis and consumption of multisensory data in Tactile Internet
数字孪生:触觉互联网中多感官数据集成、分析和消费的创新方法
- 批准号:
RGPIN-2018-05600 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Utilizing novel data sets and prediction methods to better identify and engage with customers in vulnerable circumstances and encourage sustainable water consumption in the residential sector
利用新颖的数据集和预测方法更好地识别和吸引处于弱势的客户,并鼓励住宅领域的可持续用水
- 批准号:
10008785 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Feasibility Studies
Empirical Analysis of Social Costs Caused By Product Defects Using Big Consumption Data
利用消费大数据实证分析产品缺陷造成的社会成本
- 批准号:
21H00710 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




