Biomechanics of Neural Tube Development using Brillouin-OCT Multimodality
使用布里渊-OCT 多模态进行神经管发育的生物力学
基本信息
- 批准号:10194569
- 负责人:
- 金额:$ 61.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAdvanced DevelopmentAffectAftercareAnimalsBiochemicalBiological ModelsBiomechanicsBiophysicsBlood flowCarbon DioxideClinicalComplexCongenital AbnormalityCongenital Heart DefectsCost SavingsDataDevelopmentDevelopmental BiologyDiseaseDrug or chemical Tissue DistributionEconomicsEmbryoEmbryonic DevelopmentEnsureEnvironmentEventFailureFrequenciesFunctional ImagingFutureGene ExpressionGeneticGenetic Predisposition to DiseaseGoalsGoldGrantHealth Care CostsHumanImageImaging DeviceImaging technologyImpairmentIncubatorsInterventionLightMapsMeasurementMeasuresMechanicsMediatingMethodsMicroscopeMicroscopyModalityModelingModulusMonitorMorphogenesisMorphologyMotionMusNeural FoldNeural Tube ClosureNeural Tube DefectsNeural Tube DevelopmentNeural tubeOptical Coherence TomographyOpticsPathologicPhenotypePregnancyProcessPublic HealthRegulationResearchResistanceResolutionRiskRoleSeriesSpectrum AnalysisStructural Congenital AnomaliesStructural defectStructureTechniquesTechnologyTemperatureTeratogensTestingTimeTissuesUnited Statesbasebiomechanical modelcostembryo tissueheart functionimage guidedin vivoinstrumentinterestlight scatteringmechanical forcemechanical propertiesmouse modelmultidisciplinarymultimodalitymutantneurodevelopmentnew technologynoveloptical imagingprogramsprotein expressionsocialtool
项目摘要
PROJECT ABSTRACT (Reduced to fit in < 30 lines)
The objective of this proposal is to develop a non-contact, all-optical imaging technology to map elastic moduli
and forces involved in critical aspects of embryonic development with high 3D resolution. The proposed
technology is based on combined Brillouin spectroscopy and Optical Coherence Tomography (OCT), which will
be used to gain fundamental understanding of biomechanical factors involved during neural tube closure (NTC)
in normal and pathological cases using established and well validated murine neural tube defect (NTD) models.
NTDs are the second most common structural birth defect in humans, affecting upwards of 500,000 pregnancies
worldwide and ~ 2400 pregnancies each year in the United States alone. NTC comprises a complex series of
processes that involve tissue motion, thus are driven by forces. However, the biophysics of NTC, namely the
interplay between tissue forces and stiffness, remains poorly understood, mostly because of sub-optimal
measurement techniques. In the past few years, our groups have developed advanced imaging technologies;
OCT for structural/functional imaging of developing embryos and Brillouin microscopy for mechanical mapping
of tissues, that, when combined, can be transformative to elucidate the biomechanics underlying the
development of NTDs. Our long-term goal is to elucidate how mechanical properties controlling NTC in
developing embryos can be manipulated to ensure proper neural development in at risk embryos. Our central
hypothesis is that failure of NTC leading to NTDs in genetically predisposed embryos is mediated by mechanical
alterations and abnormal forces at the edge of the fusing neural folds that can be imaged with Brillouin-OCT
multimodality. To test this central hypothesis, our objective is to combine OCT, Brillouin microscopy and
analytical modeling to establish a platform technology to map elastic moduli and forces in developing mouse
embryos. The research premise of filling a significant data gap in our understanding of NTC biomechanics is
supported by strong preliminary data. The proposal is developed with high research rigor: our Aim 1 will focus
on the advanced development of Brillouin microscopy to measure live embryonic tissue. A combined
Brillouin/OCT instrument will be developed and tested in Aim 2. Finally, in Aim 3 we will test the hypothesis that
mechanical properties and forces critically mediate genetically predisposed or teratogen-induced NTDs. To
accomplish our objective, we have assembled a multidisciplinary team with expertise in OCT (Larin), Brillouin
technology (Scarcelli), biomechanical modeling (Aglyamov), and developmental biology and NTD disorders
(Finnell). The successful completion of the proposed research program will produce a unique platform
technology, which will enable studies where a mechanical phenotype is correlated with gene and protein
expression profiles developed globally, in order to provide mechanistic understanding of the entire
developmental spectrum of events leading to NTDs and potentially other complex congenital malformations.
项目摘要(减少到 < 30 行)
该提案的目标是开发一种非接触式全光学成像技术来绘制弹性模量图
以及参与胚胎发育关键方面的力量,具有高 3D 分辨率。拟议的
技术基于布里渊光谱和光学相干断层扫描 (OCT) 的结合,将
用于获得对神经管闭合 (NTC) 过程中涉及的生物力学因素的基本了解
在正常和病理情况下,使用已建立且经过充分验证的小鼠神经管缺陷(NTD)模型。
NTD 是人类第二常见的结构性出生缺陷,影响超过 50 万次妊娠
全世界每年约有 2400 例怀孕。 NTC 包括一系列复杂的
因此,涉及组织运动的过程是由力驱动的。然而,NTC 的生物物理学,即
组织力和刚度之间的相互作用仍然知之甚少,主要是因为次优
测量技术。在过去的几年里,我们的团队开发了先进的成像技术;
用于发育胚胎结构/功能成像的 OCT 和用于机械绘图的布里渊显微镜
组织,当组合在一起时,可以变革性地阐明其背后的生物力学
NTD 的发展。我们的长期目标是阐明机械性能如何控制 NTC
可以对发育中的胚胎进行操纵,以确保有风险的胚胎中神经的正常发育。我们的中央
假设是 NTC 失败导致遗传易感胚胎中的 NTD 是由机械介导的
融合神经褶皱边缘的改变和异常力,可通过布里渊 OCT 成像
多模态。为了检验这一中心假设,我们的目标是将 OCT、布里渊显微镜和
分析建模以建立平台技术来绘制发育小鼠的弹性模量和力
胚胎。填补我们对 NTC 生物力学理解的重大数据空白的研究前提是
得到了强有力的初步数据的支持。该提案的制定具有高度的研究严谨性:我们的目标 1 将重点关注
布里渊显微镜测量活胚胎组织的先进发展。一个组合
布里渊/OCT 仪器将在目标 2 中开发和测试。最后,在目标 3 中,我们将测试以下假设:
机械特性和力对遗传易感性或致畸性诱发的 NTD 具有关键作用。到
为了实现我们的目标,我们组建了一支多学科团队,拥有OCT(拉林)、布里渊等领域的专业知识
技术 (Scarcelli)、生物力学建模 (Aglyamov) 以及发育生物学和 NTD 疾病
(芬内尔)。拟议研究计划的成功完成将产生一个独特的平台
技术,这将使机械表型与基因和蛋白质相关的研究成为可能
在全球范围内开发表达谱,以便提供对整个表达谱的机械理解
导致 NTD 和潜在其他复杂先天畸形的发育事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD H. FINNELL其他文献
RICHARD H. FINNELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD H. FINNELL', 18)}}的其他基金
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
- 批准号:
10750235 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
12th International Conference on Neural Tube Defects
第十二届国际神经管缺陷会议
- 批准号:
10469136 - 财政年份:2022
- 资助金额:
$ 61.38万 - 项目类别:
Role of Slc25a32 and Its Interaction with Lrp6 in the Etiology of Neural Tube Defects
Slc25a32 的作用及其与 Lrp6 的相互作用在神经管缺陷病因学中的作用
- 批准号:
10355528 - 财政年份:2020
- 资助金额:
$ 61.38万 - 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
- 批准号:
10570194 - 财政年份:2020
- 资助金额:
$ 61.38万 - 项目类别:
Role of Slc25a32 and Its Interaction with Lrp6 in the Etiology of Neural Tube Defects
Slc25a32 的作用及其与 Lrp6 的相互作用在神经管缺陷病因学中的作用
- 批准号:
10577749 - 财政年份:2020
- 资助金额:
$ 61.38万 - 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
- 批准号:
10352211 - 财政年份:2020
- 资助金额:
$ 61.38万 - 项目类别:
Biomechanics of Neural Tube Development using Brillouin-OCT Multimodality
使用布里渊-OCT 多模态进行神经管发育的生物力学
- 批准号:
9770703 - 财政年份:2018
- 资助金额:
$ 61.38万 - 项目类别:
Biomechanics of Neural Tube Development using Brillouin-OCT Multimodality
使用布里渊-OCT 多模态进行神经管发育的生物力学
- 批准号:
10551412 - 财政年份:2018
- 资助金额:
$ 61.38万 - 项目类别:
The Role of GPR161 in the Etiology of Neural Tube Defects
GPR161 在神经管缺陷病因学中的作用
- 批准号:
10424509 - 财政年份:2018
- 资助金额:
$ 61.38万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 61.38万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 61.38万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 61.38万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




