Biomechanics of Neural Tube Development using Brillouin-OCT Multimodality

使用布里渊-OCT 多模态进行神经管发育的生物力学

基本信息

  • 批准号:
    9770703
  • 负责人:
  • 金额:
    $ 63.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT (Reduced to fit in < 30 lines) The objective of this proposal is to develop a non-contact, all-optical imaging technology to map elastic moduli and forces involved in critical aspects of embryonic development with high 3D resolution. The proposed technology is based on combined Brillouin spectroscopy and Optical Coherence Tomography (OCT), which will be used to gain fundamental understanding of biomechanical factors involved during neural tube closure (NTC) in normal and pathological cases using established and well validated murine neural tube defect (NTD) models. NTDs are the second most common structural birth defect in humans, affecting upwards of 500,000 pregnancies worldwide and ~ 2400 pregnancies each year in the United States alone. NTC comprises a complex series of processes that involve tissue motion, thus are driven by forces. However, the biophysics of NTC, namely the interplay between tissue forces and stiffness, remains poorly understood, mostly because of sub-optimal measurement techniques. In the past few years, our groups have developed advanced imaging technologies; OCT for structural/functional imaging of developing embryos and Brillouin microscopy for mechanical mapping of tissues, that, when combined, can be transformative to elucidate the biomechanics underlying the development of NTDs. Our long-term goal is to elucidate how mechanical properties controlling NTC in developing embryos can be manipulated to ensure proper neural development in at risk embryos. Our central hypothesis is that failure of NTC leading to NTDs in genetically predisposed embryos is mediated by mechanical alterations and abnormal forces at the edge of the fusing neural folds that can be imaged with Brillouin-OCT multimodality. To test this central hypothesis, our objective is to combine OCT, Brillouin microscopy and analytical modeling to establish a platform technology to map elastic moduli and forces in developing mouse embryos. The research premise of filling a significant data gap in our understanding of NTC biomechanics is supported by strong preliminary data. The proposal is developed with high research rigor: our Aim 1 will focus on the advanced development of Brillouin microscopy to measure live embryonic tissue. A combined Brillouin/OCT instrument will be developed and tested in Aim 2. Finally, in Aim 3 we will test the hypothesis that mechanical properties and forces critically mediate genetically predisposed or teratogen-induced NTDs. To accomplish our objective, we have assembled a multidisciplinary team with expertise in OCT (Larin), Brillouin technology (Scarcelli), biomechanical modeling (Aglyamov), and developmental biology and NTD disorders (Finnell). The successful completion of the proposed research program will produce a unique platform technology, which will enable studies where a mechanical phenotype is correlated with gene and protein expression profiles developed globally, in order to provide mechanistic understanding of the entire developmental spectrum of events leading to NTDs and potentially other complex congenital malformations.
项目摘要(减少到适合< 30行) 本提案的目的是开发一种非接触式、全光学成像技术来映射弹性模量 以及涉及胚胎发育关键方面的力。拟议 该技术基于布里渊光谱学和光学相干断层扫描(OCT)的组合, 用于获得神经管闭合(NTC)过程中涉及的生物力学因素的基本理解 在正常和病理情况下,使用建立和充分验证的鼠神经管缺陷(NTD)模型。 NTD是人类第二大常见的结构性出生缺陷,影响超过50万例妊娠 仅在美国每年就有约2400例妊娠。NTC包括一系列复杂的 因此,涉及组织运动的过程由力驱动。然而,NTC的生物物理学,即 组织力和刚度之间的相互作用,仍然知之甚少,主要是因为次优 测量技术在过去的几年里,我们的团队开发了先进的成像技术; OCT用于发育胚胎的结构/功能成像,布里渊显微镜用于机械映射 组织,当结合在一起时,可以是变革性的,以阐明生物力学的基础, NTD的发展。我们的长期目标是阐明如何控制NTC的机械性能, 可以操纵发育中的胚胎以确保处于危险中的胚胎中的适当神经发育。我们的中央 有一种假说认为,在遗传易感的胚胎中,NTC的失败导致NTD是由机械介导的, 可以用布里渊-OCT成像的融合神经褶皱边缘的改变和异常力 多模态。为了验证这一中心假设,我们的目标是将联合收割机OCT、布里渊显微镜和 分析建模,以建立一个平台技术,以映射弹性模量和力,在开发鼠标 胚胎在我们对NTC生物力学的理解中,填补一个重大数据缺口的研究前提是 得到了有力的初步数据支持。该提案是以高度的研究严谨性开发的:我们的目标1将侧重于 关于布里渊显微镜测量活胚胎组织的先进发展。组合 将在目标2中开发和测试布里渊/OCT仪器。最后,在目标3中,我们将检验以下假设: 机械性能和力严重介导遗传易感性或致畸原诱导的NTD。到 为了实现我们的目标,我们组建了一个多学科团队,拥有OCT(Larin),布里渊散射(Brillouin) 技术(Scarcelli),生物力学建模(Aglyamov),发育生物学和NTD疾病 (Finnell).成功完成拟议的研究计划将产生一个独特的平台 技术,这将使机械表型与基因和蛋白质相关的研究成为可能 全球开发的表达谱,以提供对整个 导致NTD和潜在其他复杂先天性畸形的事件的发育谱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD H. FINNELL其他文献

RICHARD H. FINNELL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD H. FINNELL', 18)}}的其他基金

Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
  • 批准号:
    10750235
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
12th International Conference on Neural Tube Defects
第十二届国际神经管缺陷会议
  • 批准号:
    10469136
  • 财政年份:
    2022
  • 资助金额:
    $ 63.34万
  • 项目类别:
Role of Slc25a32 and Its Interaction with Lrp6 in the Etiology of Neural Tube Defects
Slc25a32 的作用及其与 Lrp6 的相互作用在神经管缺陷病因学中的作用
  • 批准号:
    10355528
  • 财政年份:
    2020
  • 资助金额:
    $ 63.34万
  • 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
  • 批准号:
    10570194
  • 财政年份:
    2020
  • 资助金额:
    $ 63.34万
  • 项目类别:
Role of Slc25a32 and Its Interaction with Lrp6 in the Etiology of Neural Tube Defects
Slc25a32 的作用及其与 Lrp6 的相互作用在神经管缺陷病因学中的作用
  • 批准号:
    10577749
  • 财政年份:
    2020
  • 资助金额:
    $ 63.34万
  • 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
  • 批准号:
    10352211
  • 财政年份:
    2020
  • 资助金额:
    $ 63.34万
  • 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
  • 批准号:
    9885445
  • 财政年份:
    2020
  • 资助金额:
    $ 63.34万
  • 项目类别:
Biomechanics of Neural Tube Development using Brillouin-OCT Multimodality
使用布里渊-OCT 多模态进行神经管发育的生物力学
  • 批准号:
    10194569
  • 财政年份:
    2018
  • 资助金额:
    $ 63.34万
  • 项目类别:
Biomechanics of Neural Tube Development using Brillouin-OCT Multimodality
使用布里渊-OCT 多模态进行神经管发育的生物力学
  • 批准号:
    10551412
  • 财政年份:
    2018
  • 资助金额:
    $ 63.34万
  • 项目类别:
The Role of GPR161 in the Etiology of Neural Tube Defects
GPR161 在神经管缺陷病因学中的作用
  • 批准号:
    10424509
  • 财政年份:
    2018
  • 资助金额:
    $ 63.34万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 63.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了