Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
基本信息
- 批准号:10207979
- 负责人:
- 金额:$ 88.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAfferent NeuronsAnatomic ModelsAnatomyAreaAxonBehaviorBehavioralBladderCatheterizationCommunitiesComplexComputer ModelsCoupledDataData SetDiffusion Magnetic Resonance ImagingDiseaseDorsalElectrophysiology (science)ElementsFelis catusFiberFrequenciesFunctional disorderGoalsImageImplantInjuryInterventionLower urinary tractMagnetic Resonance ImagingMeasuresMedicineMethodsModelingNeurostimulation procedures of spinal cord tissueOrganPathway interactionsPelvisPharmacologic SubstancePlayPopulationPropertyReflex actionResolutionRoleSacral spinal cord structureSpinalSpinal CordStructural ModelsStructureTechniquesTimeTissue ModelUnited StatesUrinationbasebiophysical modeldorsal columneconomic impactimprovedmodels and simulationneural recruitmentneuroregulationnovel therapeuticsopen sourcepressurerecruitsciatic nervesensory inputside effectsimulationspinal reflextoolultra high resolution
项目摘要
Lower urinary tract (LUT) dysfunction occurs in 20-40% of the global population and has an
economic impact measured in tens of billions of dollars every year in the United States. This field
desperately needs new therapies as current treatments, such as clean intermittent catheterization
and pharmaceuticals, have significant side effects. Epidural spinal cord stimulation (SCS)
provides a potential solution. SCS is a rapidly growing area of bioelectronic medicine, with tens
of thousands of implants occurring each year in the United States. While SCS normally activates
the dorsal columns, this technique can also be used to recruit primary sensory neurons as they
enter the spinal cord through the dorsal rootlets. These sensory inputs play a crucial role in
regulating bladder function6 and activating these primary sensory neurons can have powerful
effects on bladder behavior. Through ongoing SPARC efforts, our team has established that high-resolution
SCS can selectively recruit sacral afferents leading to both micturition and continence
reflexes. These data support our ultimate translational goal to develop a SGS therapy to improve
bladder function after injury and disease. However, a critical gap remains to understand, develop
and optimize these neuromodulation therapies. There are no models that accurately represent
the complex sacral spinal anatomy, and previous modelling efforts have consistently ignored the
dorsal rootlets. In this project, we will develop functionalized, anatomically accurate models of the
cat sacral spinal cord. including the dorsal rootlets, and validate these models using
electrophysioloqical data acquired under an existing SPARC effort.
Task 1: Create a pipeline for anatomically accurate, ultra-high resolution finite element
models of the cat sacral spinal cord
Accurate anatomy is critical for biophysical models of stimulation-evoked neural recruitment.
However, these structures have been underappreciated in modelling efforts, in part due to their
anatomical complexity. We will use diffusion tensor imaging (DTI) and structural magnetic
resonance imaging to acquire detailed anatomy of the sacral spinal cord in the cat, including
dorsal and ventral rootlet fiber pathways and develop a pipeline within o2S2PARC segment these
images and create finite element method (FEM) models of these tissues. Year 1: Imaging dataset
of sacral spinal cord in one cat and preliminary pipeline. Year 2: Imaging datasets for four spinal
cords to validate anatomical model creation pipeline.
Task 2: Create finite element models, functionalized with computational axon models, and
validate recruitment using existing electrophysiological data
We will use Sim4Life and the o2S2PARC platform to mesh and populate simplified and
anatomically accurate spinal cord models with populations of pelvic, pudenda! and sciatic nerve
axons that project into the cord. DTI data will be used to create realistic 3D axon trajectories and
the model will be validated using existing data (OT2OD024908). Year 1: Functionalized model of
simplistic spinal cord and simulated effects of epidural stimulation. Year 2: Functionalized model
of anatomically accurate sacral spinal cord with validated recruitment properties.
Task 3: Model spinal reflexes that simulate frequency-dependent excitatory and inhibitory
bladder activity
SCS at different frequencies on the same contact can evoke opposing effects on bladder pressure
through spinal reflexes. To model this effect we will extend SCS recruitment models to include,
for the first time, computational models of spinal reflexes that reproduce observed behavioral
effects. This will create functionalized finite element models that can predict the effects of
stimulation frequency on a target organ. Year 1: Reflex model structure defined and coupled to
finite element stimulations. Year 2: Completed functional simulations of bladder behavior, driven
by SCS, that reproduce frequency-dependent effects.
This project will create credible (https://bit.ly/2NFeYLj) open-source and community extensible
tools, models and simulations to improve SGS-based neuromodulation therapies to enhance
treatments for people living with lower urinary tract dysfunction.
下尿路(LUT)功能障碍发生在20-40%的全球人口中,
在美国,每年数百亿美元的经济影响。这一领域
迫切需要新的治疗方法,如清洁间歇性导管插入术
和药物都有很大的副作用。硬膜外脊髓电刺激(SCS)
提供了一个潜在的解决方案。SCS是一个快速发展的生物电子医学领域,
每年在美国发生的数千例植入手术。当SCS正常激活时
背柱,这项技术也可以用来招募初级感觉神经元,因为它们
通过背根进入脊髓。这些感官输入在以下方面起着至关重要的作用:
调节膀胱功能6并激活这些初级感觉神经元,
对膀胱行为的影响通过持续的SPARC努力,我们的团队已经建立了高分辨率
SCS可以选择性地募集骶神经传入,导致排尿和排尿
反射这些数据支持我们的最终转化目标,即开发SGS疗法,
损伤和疾病后的膀胱功能。然而,一个关键的差距仍然是理解,发展,
并优化这些神经调节疗法。没有模型能准确地代表
复杂的骶骨脊柱解剖结构,以前的建模工作一直忽略了
背根在这个项目中,我们将开发功能化的,解剖学上准确的模型,
猫骶髓包括背根,并验证这些模型使用
电生理学数据在现有的电生理学努力下获得。
任务1:为解剖学上精确的超高分辨率有限元创建管道
猫骶髓模型
准确的解剖结构是刺激诱发神经募集的生物物理模型的关键。
然而,在建模工作中,这些结构一直被低估,部分原因是它们
解剖复杂性我们将使用扩散张量成像(DTI)和结构磁共振成像(MRI)。
共振成像,以获得猫骶脊髓的详细解剖结构,包括
背侧和腹侧小根纤维通路,并在o2 S2 PARC段内形成管道,
图像并创建这些组织的有限元方法(FEM)模型。第1年:成像数据集
一只猫的骶髓和初步管道。第2年:四个脊柱的成像数据集
用于验证解剖模型创建管道的软线。
任务2:创建有限元模型,用计算轴突模型功能化,
使用现有电生理数据验证招募
我们将使用Sim 4Life和o2 S2 PARC平台来网格化和填充简化的
解剖学上精确的脊髓模型,包括骨盆和阴部!和坐骨神经
轴突伸入脊髓DTI数据将用于创建逼真的3D轴突轨迹,
将使用现有数据(OT 2 OD 024908)对模型进行验证。第一年:功能化模型
简单的脊髓和硬膜外刺激的模拟效果。第二年:功能化模型
解剖学上准确的骶骨脊髓,具有经验证的募集特性。
任务3:模拟频率依赖性兴奋和抑制的脊髓反射模型
膀胱活动
在相同接触上以不同频率的SCS可以引起对膀胱压力的相反影响
通过脊髓反射。为了模拟这种效应,我们将扩展SCS招募模型,
这是第一次,脊髓反射的计算模型再现了观察到的行为
方面的影响.这将创建功能化有限元模型,可以预测
目标器官上的刺激频率。第1年:定义Reflex模型结构并与之耦合
有限元仿真第2年:完成膀胱行为的功能模拟,
通过SCS,再现频率依赖效应。
该项目将创建可信的(https://bit.ly/2NFeYLj)开源和社区可扩展
工具、模型和模拟,以改善基于SGS的神经调节疗法,
治疗下尿路功能障碍的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert A Gaunt其他文献
Robert A Gaunt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert A Gaunt', 18)}}的其他基金
Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
- 批准号:
10469840 - 财政年份:2020
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10402064 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9903468 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10246110 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
9513136 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9309546 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10003455 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 88.78万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 88.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 88.78万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 88.78万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 88.78万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 88.78万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 88.78万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 88.78万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 88.78万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




