Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation

软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术

基本信息

  • 批准号:
    10246110
  • 负责人:
  • 金额:
    $ 50.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Visceral organs present unique challenges to studying functional physiology and neural control. Visceral organs are often surrounded by a nerve plexus that provides distributed innervation along the organ surface and contain autonomic ganglia that can modulate function locally. Given this complexity, creating functional maps of visceral organ innervation is challenging. Another challenge is measuring organ state itself. This is significantly exacerbated by the fact that many of these organs are soft, elastic, and undergo large volume changes. In this proposal, we will develop soft silicone electrode nets compatible with these unique challenges and that can envelop visceral organs and deploy high-resolution electrodes to arbitrary positions on the organ surface. This approach is based on a 3D printed silicone electrode technology. These electrode nets will be augmented with strain gauge sensors and electrical impedance tomography electrodes to monitor physiological organ state. Ultimately, this new class of devices will 1) be intrinsically soft and elastic to allow conformation with visceral organs that undergo large volume changes, 2) integrate organ state sensors based on strain gauges and electrical impedance tomography, 3) prevent delamination issues typically associated with other thin film electrode manufacturing processes, and 4) allow rapid customization to cost-effectively transition to any organ system in animals or humans. This technology is based on materials that have a history of use in biomedical implants and are therefore potentially suitable for conducting neural mapping and electrophysiological studies of human organs in vivo. We will evaluate device performance using the bladder and urethra as a model due to the challenging interface requirements (e.g. large volume changes) and potential clinical relevance. Overactive bladder and urinary incontinence affects millions of people worldwide, is associated with costs upwards of $60 billion each year in the United States, and leads to significant decreases in quality of life. Electrode nets will be tested in acute cat experiments where we will determine the electrode-tissue mechanical stability, evaluate embedded sensor performance, and develop functional neural maps of the surface of the bladder and urethra. We will also validate device performance in a series of chronic animal experiments where device performance will be monitored for up to four months post-implant. An important feature of this enabling technology and associated manufacturing process is that these devices will be able to be quickly and cost-effectively redesigned to study other visceral organ systems including the stomach, intestines, and colon across a range of animal models as well as humans.
内脏器官对研究功能生理学和神经控制提出了独特的挑战。内脏器官 通常被神经丛包围,神经丛沿着器官表面提供分布式神经支配,并包含 自主神经节可以局部调节功能。鉴于这种复杂性,创建内脏功能图 器官神经支配具有挑战性。另一个挑战是测量器​​官状态本身。这显着 由于许多这些器官是柔软的、有弹性的并且经历较大的体积变化,这一事实加剧了这种情况。 在本提案中,我们将开发能够应对这些独特挑战的软硅胶电极网,并且 可以包裹内脏器官并将高分辨率电极部署到器官表面的任意位置。 该方法基于 3D 打印硅胶电极技术。这些电极网将得到增强 带有应变计传感器和电阻抗断层扫描电极来监测生理器官状态。 最终,这类新型设备将 1) 本质上柔软且有弹性,以允许与内脏的构象 经历较大体积变化的器官,2)集成基于应变计的器官状态传感器和 电阻抗断层扫描,3) 防止通常与其他薄膜相关的分层问题 电极制造工艺,4) 允许快速定制,以经济有效地过渡到任何器官 动物或人类的系统。该技术基于具有生物医学使用历史的材料 植入物,因此可能适合进行神经映射和电生理学研究 人体体内的器官。 由于界面具有挑战性,我们将使用膀胱和尿道作为模型来评估设备性能 要求(例如大体积变化)和潜在的临床相关性。膀胱过度活动症和尿频 失禁影响着全世界数百万人,每年造成的损失高达 600 亿美元 美国,并导致生活质量显着下降。电极网将在急性猫身上进行测试 我们将确定电极组织机械稳定性、评估嵌入式传感器的实验 性能,并开发膀胱和尿道表面的功能神经图。我们还将验证 一系列慢性动物实验中的设备性能,其中设备性能将被监测 植入后最多四个月。这种使能技术和相关制造的一个重要特征 过程是这些设备将能够快速且经济有效地重新设计以研究其他内脏器官 一系列动物模型以及人类的器官系统,包括胃、肠和结肠。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert A Gaunt其他文献

Robert A Gaunt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert A Gaunt', 18)}}的其他基金

Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
  • 批准号:
    10207979
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
  • 批准号:
    10469840
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
  • 批准号:
    10402064
  • 财政年份:
    2017
  • 资助金额:
    $ 50.06万
  • 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
  • 批准号:
    9903468
  • 财政年份:
    2017
  • 资助金额:
    $ 50.06万
  • 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
  • 批准号:
    9513136
  • 财政年份:
    2017
  • 资助金额:
    $ 50.06万
  • 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
  • 批准号:
    9309546
  • 财政年份:
    2017
  • 资助金额:
    $ 50.06万
  • 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
  • 批准号:
    10003455
  • 财政年份:
    2017
  • 资助金额:
    $ 50.06万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了