Combating Subclonal Evolution of Resistant Cancer Phenotypes

对抗耐药癌症表型的亚克隆进化

基本信息

项目摘要

Overall abstract Our Cancer Systems Biology Center of HoPE (Heterogeneity of Phenotypic Evolution) will develop a suite of systems-based methodologies to understand how genomic diversity, clonal evolution, and phenotypic change . To evaluate their potential for translation, we will integrate these dynamic models with clinical trials that will evaluate whether these phenotypic changes can be targeted for therapy. We hypothesize that acquired resistance emerges from selection acting on phenotypes during tumor evolution, and that simultaneously measuring and modeling subclone genotypes and phenotypes will identify new, and testable, therapeutic targets. Selective pressures from therapy and the tumor microenvironment can propel subclones from every patient's tumor along an evolutionary trajectory that leads to resistance. Indeed, our data shows that both genetic and phenotypic diversity among tumor subclones evolves as cancer cells progress to a resistant state. However, it is not yet known the specific phenotypes that promote that resistant state, the interactions among them, and how they converge to common resistant phenotypes seen in late stage cancer. To address these and other questions, we will develop a new class of dynamical systems models of subclone evolution to characterize the changes and development of key cell states that arise during acquired chemo-resistance and metastasis using our unique patient cohorts. These mechanistic models will identify points of therapeutic vulnerability that we will test in clinical trials aimed at blocking evolution to a resistant state by targeting critical resistant phenotypes. Our Center is comprised of an Administrative, Education/Outreach, Translational, and Computational Cores, in addition to two complementary projects. The synergies are derived from: 1) the convergent parameterization of the evolutionary models drawn from deep longitudinal patient progression studies (Project 1) and broad multisite metastatic tumor analyses (Project 2), resulting in a robust model to identify resistant states for clinical targeting; and 2) an integrated computational and experimental framework and resources for dissecting tumor heterogeneity and evolution that will contribute to an improved capacity for personalized cancer therapy. Our multidisciplinary team of systems biologists, bioinformaticians, tumor biologists, pharmacologists, mathematical biologists, and clinicians will tackle these scientific challenges. We will create programs to educate the next generation of scientists in systems biology and inform the community about the latest scientific advances and their impact on treatment strategies. And we will provide state of the art tools for the analysis of patient samples and tumor genomic complexity. These studies move beyond prior research by integrating cell population dynamics and cellular phenotypes with cellular genotypes, and will deliver approaches and a knowledge base to block or reverse the transition to a resistant state for advanced stage cancer patients. interact in the progression toward chemoresistant breast and ovarian cancer
总体摘要 我们的癌症系统生物学中心HoPE(表型进化的异质性)将发展 一套 基于系统的方法来了解基因组多样性,克隆进化和表型变化 .评估他们的潜力, 翻译,我们将把这些动态模型与临床试验相结合,以评估这些模型是否 表型变化可以作为治疗的目标。我们假设获得性耐药性来自于 选择作用于肿瘤演变过程中的表型,同时测量和 模拟亚克隆基因型和表型将鉴定新的、可测试的治疗靶点。 来自治疗和肿瘤微环境的选择性压力可以推动每个患者的亚克隆 肿瘤沿着一条进化的轨迹,导致耐药性。事实上,我们的数据显示, 肿瘤亚克隆中的表型多样性随着癌细胞进展到耐药状态而演变。但 目前还不知道促进耐药状态的特定表型,它们之间的相互作用, 它们如何汇聚成晚期癌症中常见的耐药表型。为了解决这些和其他 问题,我们将开发一类新的动力系统模型的亚克隆进化的特点, 在获得性化疗耐药性和转移过程中出现的关键细胞状态的变化和发展, 我们独特的病人群体这些机制模型将确定治疗的弱点,我们将 临床试验中的一项测试,旨在通过靶向关键的耐药表型来阻断向耐药状态的演变。 我们的中心由行政、教育/外展、翻译和计算核心组成, 两个互补项目。协同作用来自:1)收敛参数化 从深度纵向患者进展研究(项目1)和广泛的 多中心转移性肿瘤分析(项目2),产生了一个稳健的模型,用于识别临床应用的耐药状态 靶向;和2)用于解剖肿瘤的综合计算和实验框架和资源 这将有助于提高个性化癌症治疗的能力。我们 系统生物学家、生物信息学家、肿瘤生物学家、药理学家、数学 生物学家和临床医生将解决这些科学挑战。我们将创建项目来教育下一个 系统生物学的一代科学家,并告知社会最新的科学进展, 对治疗策略的影响。我们将提供最先进的工具来分析病人 样本和肿瘤基因组复杂性。这些研究超越了先前的研究, 种群动态和细胞表型与细胞基因型,并将提供方法和 知识库,以阻止或逆转晚期癌症患者向耐药状态的转变。 在乳腺癌和卵巢癌化疗耐药的进展中相互作用

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives.
Opportunities for improving cancer treatment using systems biology.
  • DOI:
    10.1016/j.coisb.2019.10.018
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Griffiths;A. Cohen;Veronica C Jones;R. Salgia;Jeffrey T. Chang;A. Bild
  • 通讯作者:
    J. Griffiths;A. Cohen;Veronica C Jones;R. Salgia;Jeffrey T. Chang;A. Bild
Phylogenetic inference from single-cell RNA-seq data.
  • DOI:
    10.1038/s41598-023-39995-6
  • 发表时间:
    2023-08-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
ENDORSE: a prognostic model for endocrine therapy in estrogen-receptor-positive breast cancers.
  • DOI:
    10.15252/msb.202110558
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
  • 通讯作者:
Immune Phenotype and Response to Neoadjuvant Therapy in Triple-Negative Breast Cancer.
  • DOI:
    10.1158/1078-0432.ccr-21-0144
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yam C;Yen EY;Chang JT;Bassett RL;Alatrash G;Garber H;Huo L;Yang F;Philips AV;Ding QQ;Lim B;Ueno NT;Kannan K;Sun X;Sun B;Parra Cuentas ER;Symmans WF;White JB;Ravenberg E;Seth S;Guerriero JL;Rauch GM;Damodaran S;Litton JK;Wargo JA;Hortobagyi GN;Futreal A;Wistuba II;Sun R;Moulder SL;Mittendorf EA
  • 通讯作者:
    Mittendorf EA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREA Hope BILD其他文献

ANDREA Hope BILD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREA Hope BILD', 18)}}的其他基金

AKT as a resistance mechanism to cell cycle and endocrine therapies in ER+ breast cancer
AKT 作为 ER 乳腺癌细胞周期和内分泌治疗的耐药机制
  • 批准号:
    10599693
  • 财政年份:
    2021
  • 资助金额:
    $ 219.53万
  • 项目类别:
Mechanism of estrogen independent proliferation in ER+ breast cancer cells
ER乳腺癌细胞雌激素非依赖性增殖机制
  • 批准号:
    10304408
  • 财政年份:
    2021
  • 资助金额:
    $ 219.53万
  • 项目类别:
Mechanism of estrogen independent proliferation in ER+ breast cancer cells
ER乳腺癌细胞雌激素非依赖性增殖机制
  • 批准号:
    10477375
  • 财政年份:
    2021
  • 资助金额:
    $ 219.53万
  • 项目类别:
Evolution of cancer cell phylogenies and phenotypes in breast cancer resistance
乳腺癌耐药中癌细胞系统发育和表型的进化
  • 批准号:
    10599731
  • 财政年份:
    2021
  • 资助金额:
    $ 219.53万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10207525
  • 财政年份:
    2017
  • 资助金额:
    $ 219.53万
  • 项目类别:
Combating Subclonal Evolution of Resistant Cancer Phenotypes
对抗耐药癌症表型的亚克隆进化
  • 批准号:
    9482409
  • 财政年份:
    2017
  • 资助金额:
    $ 219.53万
  • 项目类别:
Project 1: Dynamic Genomic and Microenvironmental Models of Acquired Chemoresistance
项目1:获得性化疗耐药的动态基因组和微环境模型
  • 批准号:
    10207529
  • 财政年份:
    2017
  • 资助金额:
    $ 219.53万
  • 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
  • 批准号:
    8366165
  • 财政年份:
    2012
  • 资助金额:
    $ 219.53万
  • 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
  • 批准号:
    8700343
  • 财政年份:
    2012
  • 资助金额:
    $ 219.53万
  • 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
  • 批准号:
    8902053
  • 财政年份:
    2012
  • 资助金额:
    $ 219.53万
  • 项目类别:

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Studentship
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
  • 批准号:
    2322310
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Continuing Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
  • 批准号:
    23K20274
  • 财政年份:
    2024
  • 资助金额:
    $ 219.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了