Project 1: Dynamic Genomic and Microenvironmental Models of Acquired Chemoresistance
项目1:获得性化疗耐药的动态基因组和微环境模型
基本信息
- 批准号:10207529
- 负责人:
- 金额:$ 56.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAftercareAlgorithmsBiological ModelsBiologyBreast Cancer CellCancer PatientCancer RelapseCell CommunicationCellsChemoresistanceClinicalClinical ResearchClinical TrialsCollectionComplementComputer ModelsCuesDNA Sequence AlterationDNA sequencingDataDependenceDevelopmentDiseaseDrug CombinationsDrug resistanceEnvironmental Risk FactorEquilibriumEvolutionExhibitsGenomicsGenotypeGlucoseHeterogeneityImmuneIndividualKDM1A geneMalignant NeoplasmsMalignant neoplasm of ovaryMeasuresModelingNatureNeoplasm MetastasisNormal CellOncogenicOutcomeOutcomes ResearchPathway interactionsPatient MonitoringPatientsPharmaceutical PreparationsPhenotypePopulationPopulation DynamicsProceduresRefractoryResearchResistanceResistance developmentSamplingSignal TransductionStructureTestingTimeadvanced breast cancerbasecancer cellchemotherapeutic agentchemotherapycombatdeep sequencingdynamic systemgenomic aberrationsin vivoinhibitor/antagonistmalignant breast neoplasmneoplastic cellnovelpredictive modelingpressurerefractory cancerresponsesingle-cell RNA sequencingstandard of caretooltranscriptome sequencingtreatment choicetumortumor heterogeneitytumor progression
项目摘要
ABSTRACT
Breast and ovarian cancers are heterogeneous diseases, as a typical tumor contains multiple “subclones”,
which are defined as evolutionarily related subpopulations of cells with a different complement of somatically
acquired DNA mutations and phenotypes. When chemotherapeutic agents are administered to the patient,
some of these subclones may gain a selective advantage and develop resistance to the treatment, resulting in
cancer relapse and progression. For this reason, it is imperative to identify these subclones and their evolution
across treatment; and to understand how the genomic aberrations within these subclones drive resistance to
chemotherapy. We will integrate experimental biology and computational models across temporal samples of
patient tumors as they develop a resistant state in order to better understand and combat refractory and
terminal cancer. To enable the study of tumor heterogeneity evolution in patients, we will utilize a highly unique
collection of metastatic tumor cells from breast and ovarian cancer patients before, during, and after
treatments, often across multiple courses of chemotherapy, as well as tumors from a clinical trial taken before
and after therapy. We use deep sequencing to find genomic aberrations at each of these time points, and
develop systems models to identify the subclones and follow phenotypic changes and their functional impacts
of subclone evolution in response to chemotherapy. We hypothesize that 1) Dynamical systems models based
on the evolution of subclone structure and acquisition of oncogenic phenotypes during treatment can identify
key factors in the development of a chemo-resistant state; and 2) We can delay development of a chemo-
resistant cancer state by inhibiting development of phenotypes that emerge over time commonly during
treatment. We will model resistant cancer cell populations and both extrinsic and immune microenvironmental
factors to identify critical features of acquired resistance and apply these models to a clinical trial aimed at
blocking transition to a resistant cancer state. While these components can exhibit co-dependencies, by their
nature they can also have vulnerabilities based on these interactive features, and if one can inhibit dependent
relationships within a population it may be possible to shift the equilibrium of a tumor from a chemoresistant
state to a sensitive state. The algorithms and procedures we are developing in this proposal will for a rational
basis for real-time patient monitoring and making treatment choices for refractory patients. The outcomes of
this research will deliver approaches to block or reverse the transition to a resistant state for advanced stage
breast and ovarian cancer patients.
抽象的
乳腺癌和卵巢癌是异质性疾病,因为典型的肿瘤包含多个“亚克隆”,
这些定义为细胞的进化相关亚群,并以不同的方式完成
获得的DNA突变和表型。当对患者施用化学治疗剂时,
这些亚克隆中的一些可能会获得对治疗的选择性优势和发展性的抗性,从而
癌症缓解和进展。因此,必须识别这些亚克隆及其进化
在治疗中;并了解这些亚克隆中的基因组畸变如何驱动抗性
化学疗法。我们将整合跨临时样本的实验生物学和计算模型
患者肿瘤在产生抗性状态时,以更好地理解和打击难治性和
晚期癌。为了研究患者肿瘤异质性演变,我们将利用高度独特的
从乳腺癌和卵巢癌患者中收集转移性肿瘤细胞
治疗通常在化学疗法的多种课程中,以及以前进行的临床试验的肿瘤
并在治疗后。我们使用深度测序在每个时间点找到基因组畸变,并且
开发系统模型以识别亚克隆并遵循表型变化及其功能影响
响应化学疗法的亚克隆进化。我们假设1)基于动态系统模型
关于亚克隆结构的演变和治疗过程中致癌表型的获取
化学抗性状态发展的关键因素; 2)我们可以延迟化学的发展
通过抑制通常在时间上出现的表型的发展,通常在
治疗。我们将建模抗性癌细胞群体以及外部和免疫微环境
确定获得抵抗的关键特征并将这些模型应用于针对的临床试验的因素
阻止过渡到抗性癌状态。尽管这些组件可以通过它们的共同依赖性存在
他们也可能基于这些互动特征具有脆弱性,并且如果可以抑制依赖性
人群中的关系可能有可能使肿瘤的等效物从化学抗性中移动
状态达到敏感状态。我们在本提案中制定的算法和程序将对合理
实时患者监测并为难治性患者做出治疗选择的基础。结果
这项研究将提供阻止或扭转过渡到高级阶段的抵抗状态的方法
乳腺癌和卵巢癌患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREA Hope BILD其他文献
ANDREA Hope BILD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREA Hope BILD', 18)}}的其他基金
AKT as a resistance mechanism to cell cycle and endocrine therapies in ER+ breast cancer
AKT 作为 ER 乳腺癌细胞周期和内分泌治疗的耐药机制
- 批准号:
10599693 - 财政年份:2021
- 资助金额:
$ 56.52万 - 项目类别:
Mechanism of estrogen independent proliferation in ER+ breast cancer cells
ER乳腺癌细胞雌激素非依赖性增殖机制
- 批准号:
10304408 - 财政年份:2021
- 资助金额:
$ 56.52万 - 项目类别:
Mechanism of estrogen independent proliferation in ER+ breast cancer cells
ER乳腺癌细胞雌激素非依赖性增殖机制
- 批准号:
10477375 - 财政年份:2021
- 资助金额:
$ 56.52万 - 项目类别:
Evolution of cancer cell phylogenies and phenotypes in breast cancer resistance
乳腺癌耐药中癌细胞系统发育和表型的进化
- 批准号:
10599731 - 财政年份:2021
- 资助金额:
$ 56.52万 - 项目类别:
Combating Subclonal Evolution of Resistant Cancer Phenotypes
对抗耐药癌症表型的亚克隆进化
- 批准号:
9482409 - 财政年份:2017
- 资助金额:
$ 56.52万 - 项目类别:
Combating Subclonal Evolution of Resistant Cancer Phenotypes
对抗耐药癌症表型的亚克隆进化
- 批准号:
10207524 - 财政年份:2017
- 资助金额:
$ 56.52万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
8366165 - 财政年份:2012
- 资助金额:
$ 56.52万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
8700343 - 财政年份:2012
- 资助金额:
$ 56.52万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
8902053 - 财政年份:2012
- 资助金额:
$ 56.52万 - 项目类别:
相似国自然基金
面向掌纹识别的安全与隐私保护理论和方法研究
- 批准号:62376211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
- 批准号:72304093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
- 批准号:62306195
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
- 批准号:72381240026
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
- 批准号:42307496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 56.52万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 56.52万 - 项目类别:
Integrating liquid biopsy-based epigenetic and imaging modalities to evaluate disease response in multiple myeloma
整合基于液体活检的表观遗传学和成像方式来评估多发性骨髓瘤的疾病反应
- 批准号:
10651370 - 财政年份:2023
- 资助金额:
$ 56.52万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 56.52万 - 项目类别: