Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
基本信息
- 批准号:8700343
- 负责人:
- 金额:$ 55.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-08 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressBiochemicalBiologicalBiological AssayBiological MarkersBiologyBreast Cancer CellBreast Cancer TreatmentCancer PatientCancer cell lineCell LineClinicalClinical TrialsComplexComprehensionComputing MethodologiesCouplingDataData SetDevelopmentDrug TargetingDrug resistanceEventFactor AnalysisFoundationsGene ExpressionGene Expression ProfileGene MutationGenesGenomicsGoalsGrowthGrowth Factor ReceptorsHumanImage AnalysisIndividualInvestigationKnowledgeMalignant NeoplasmsMethodsModelingMolecular AnalysisMutationMutation AnalysisNon-linear ModelsOncogene DeregulationOutcomePathway AnalysisPathway interactionsPatientsPatternPharmaceutical PreparationsPhenotypePleural effusion disorderPrimary NeoplasmProteomicsProto-Oncogene Proteins c-aktRNA SequencesReceptor SignalingRegimenResearchResistanceResourcesSamplingSeriesSignal PathwaySignal TransductionSolid NeoplasmStandardizationStatistical ModelsTestingThe Cancer Genome AtlasTherapeuticTranslatingValidationWorkbasecomputer based statistical methodscomputerized toolsdrug sensitivityinhibitor/antagonistknock-downmalignant breast neoplasmneoplastic cellnetwork modelsnovelnovel strategiesportabilitypre-clinicalresearch clinical testingresponsetherapy resistanttooltreatment strategytumortumor growth
项目摘要
DESCRIPTION (provided by applicant): The focus of our research is to investigate core signaling pathways that contribute to cancer growth, and to develop models to accurately determine optimal therapeutic regimens for cancer patients. Recent results from clinical trials using targeted therapies for solid tumors have shown that drug response is oftentimes not driven by one mutation or pathway alone. Instead, response is confounded by interactions between the target gene and deregulation of downstream and alternative pathways. Therefore, our studies aim to model how signaling pathways work in relation to others in human tumors, and to identify patterns that correlate to drug response. We hypothesize that integrated 'omic' pathway models composed of multiple components of the growth factor receptor pathways will define biologically distinct subtypes of breast cancer and will accurately predict drug response in
patient tumors. Specifically, we will develop and use genomic signatures centered on multiple levels of the growth factor receptor networks (GFRNs) to investigate how these pathways signal in human tumors. Novel statistical modeling approaches, including probabilistic barcode data standardization and Bayesian factor analysis for prediction of pathways and pathway interactions in tumors will move beyond individual pathway predictions to instead profile multi-pathway models in human tumors. Further, these models will integrate 'omic' data types, including RNA-sequencing, mutation status, and proteomic data, enabling a more comprehensive analysis of GFRN deregulation. GFRN pathway activity predictions and sensitivity/resistance to drugs that target the respective pathways will be validated in both cell lines as well as in "fresh" human tumor cells grown in 3-dimensional culture. Importantly, clinical validation of the pathway profiles will be carried out with I-SPY 2 (Investigation of Seril Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2) clinical trial data, which uses targeted therapies directed at GFR pathway components in the treatment of breast cancer. Ultimately, our studies will generate a series of well-validated pathway based biomarkers for individualized assessment of drug responsiveness, as well as interrogation of the coordinate deregulation of specific GFRN components in human tumors.
描述(由申请人提供):我们的研究重点是研究促进癌症生长的核心信号通路,并建立模型以准确确定癌症患者的最佳治疗方案。使用靶向治疗实体瘤的临床试验的最新结果表明,药物反应通常不是由一个突变或单独的途径驱动的。相反,反应被靶基因与下游和替代途径放松管制之间的相互作用所混淆。因此,我们的研究旨在模拟信号通路在人类肿瘤中的作用,并确定与药物反应相关的模式。我们假设,由生长因子受体途径的多个组分组成的综合“组学”途径模型将定义生物学上不同的乳腺癌亚型,并将准确预测乳腺癌的药物反应
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREA Hope BILD其他文献
ANDREA Hope BILD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREA Hope BILD', 18)}}的其他基金
AKT as a resistance mechanism to cell cycle and endocrine therapies in ER+ breast cancer
AKT 作为 ER 乳腺癌细胞周期和内分泌治疗的耐药机制
- 批准号:
10599693 - 财政年份:2021
- 资助金额:
$ 55.13万 - 项目类别:
Mechanism of estrogen independent proliferation in ER+ breast cancer cells
ER乳腺癌细胞雌激素非依赖性增殖机制
- 批准号:
10304408 - 财政年份:2021
- 资助金额:
$ 55.13万 - 项目类别:
Mechanism of estrogen independent proliferation in ER+ breast cancer cells
ER乳腺癌细胞雌激素非依赖性增殖机制
- 批准号:
10477375 - 财政年份:2021
- 资助金额:
$ 55.13万 - 项目类别:
Evolution of cancer cell phylogenies and phenotypes in breast cancer resistance
乳腺癌耐药中癌细胞系统发育和表型的进化
- 批准号:
10599731 - 财政年份:2021
- 资助金额:
$ 55.13万 - 项目类别:
Combating Subclonal Evolution of Resistant Cancer Phenotypes
对抗耐药癌症表型的亚克隆进化
- 批准号:
9482409 - 财政年份:2017
- 资助金额:
$ 55.13万 - 项目类别:
Project 1: Dynamic Genomic and Microenvironmental Models of Acquired Chemoresistance
项目1:获得性化疗耐药的动态基因组和微环境模型
- 批准号:
10207529 - 财政年份:2017
- 资助金额:
$ 55.13万 - 项目类别:
Combating Subclonal Evolution of Resistant Cancer Phenotypes
对抗耐药癌症表型的亚克隆进化
- 批准号:
10207524 - 财政年份:2017
- 资助金额:
$ 55.13万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
8366165 - 财政年份:2012
- 资助金额:
$ 55.13万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
8902053 - 财政年份:2012
- 资助金额:
$ 55.13万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 55.13万 - 项目类别:














{{item.name}}会员




