Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
基本信息
- 批准号:10206480
- 负责人:
- 金额:$ 41.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-19 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AwardBiological ProcessCRISPR/Cas technologyCell Cycle ArrestCell ProliferationCell TherapyCellsChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsCustomDNADNA Double Strand BreakDNA RepairDevelopmentDiseaseFoundationsFutureGene-ModifiedGenerationsGenesGenomeGenomic medicineHumanImageIn SituIn VitroKnowledgeMethodsMissionMonitorMorphogenesisMutationOperative Surgical ProceduresPatientsPolymersPreventionProcessProductionProductivityPublic HealthRNAResearchTechniquesTestingTherapeuticTimeTissue TherapyTissuesUnited States National Institutes of Healthbasedisease diagnosisgene correctiongene therapygenome editingimprovedinduced pluripotent stem cellinnovationnovelparticleprecision drugsprecision medicineprogramssmall moleculestem cell differentiationstem cellstime usetooltrafficking
项目摘要
PROJECT SUMMARY/ ABSTRACT. There continues to be a fundamental gap in understanding how CRISPR-
based genome editors produce gene modifications in different human cells. A lack of understanding of why
various editors fail and why some succeed in creating desired gene edits - while retaining full cell and tissue
functionality - limits the use of genome editing tools. By observing genome editing in real-time within patient-
derived cells in vitro, I seek to understand the bottlenecks in performing genome editing on human cells with
precisely-controlled genome editor particles. Particles will be systematically assembled with various DNA, RNA,
and polymeric components and delivered to patient-derived cells and microtissues. In situ high content imaging
and analysis within customized cell substrates will monitor genome editing at multiple scales. The central
hypothesis is that new assemblies of CRISPR-Cas9 particles can probe different biological processes of
trafficking, DNA-double strand break formation, and DNA repair involved in the genome editing of human cells
and tissues, as well as downstream effects on biological processes involving cell cycle arrest and
morphogenesis. This hypothesis will be tested within patient-derived stem cells and tissues for both gene
disruption and correction. An overarching rationale for the proposed research is that an improved understanding
of fundamental biological processes involved with genome editing could enable the development of novel cell
therapies and gene therapies for future genomic and precision medicine. Guided by strong productivity in the
current early stage R35 award, I will pursue three research programs: 1) Assemble Cas9 particles to identify
chromatin structures within human cells that promote gene correction; 2) Assemble Cas9 particles to identify
delivery and DNA repair processes that promote gene correction within stem cells; and, 3) Assemble Cas9
particles to identify cell proliferative and tissue morphogenesis processes that promote gene correction of
diseased mutations in patient-derived microtissues. Under the first research program, editing will occur at target
genes that have variable chromatin structures within induced pluripotent stem cells (iPSCs), differentiated
progeny, and with small-molecule treatment. Under the second and third research programs, genome editors
will be applied to gene-correct diseased mutations in iPSCs, and microtissues matured from them. The approach
is innovative, in the applicant’s opinion, because it departs from the status quo by systematically changing
multiple components at a time using novel methods in patient-derived cells. The proposed research is significant
because it is expected to advance and expand our understanding of how genome editing tools can be applied
for the generation of advanced therapeutics, ranging from targeted small molecules to cell/tissue therapies.
Ultimately, such knowledge would solidify the foundation for new translational projects involving genome editing.
项目摘要/摘要。在理解CRISPR-
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishanu Saha其他文献
Krishanu Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishanu Saha', 18)}}的其他基金
The CRISPR Vision Program: Nonviral Genome Editing Platforms to Treat Inherited Retinal Channelopathies
CRISPR 视觉计划:治疗遗传性视网膜通道病的非病毒基因组编辑平台
- 批准号:
10668161 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Streamlined development of an IND with the silica nanocapsule loaded with Cas9 genome editors to disrupt the dominant BEST1 mutant allele
使用装载有 Cas9 基因组编辑器的二氧化硅纳米胶囊简化 IND 的开发,以破坏占主导地位的 BEST1 突变等位基因
- 批准号:
10668168 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10618322 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9142548 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10410499 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9335383 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 41.56万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 41.56万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 41.56万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 41.56万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 41.56万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 41.56万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 41.56万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 41.56万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




