Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
基本信息
- 批准号:9142548
- 负责人:
- 金额:$ 36.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-19 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AutologousBiological ProcessCRISPR/Cas technologyCell TherapyCellsDNA Double Strand BreakDNA RepairDataEngineered GeneFoundationsFutureGene-ModifiedGenerationsGenesGenomeGenomicsGoalsHumanImage AnalysisIn SituIn VitroKnowledgeLifeMethodsMissionMonitorMutationNonhomologous DNA End JoiningOperative Surgical ProceduresPathway interactionsPatientsPharmaceutical PreparationsPreventionProductionPublic HealthReporterResearchStem cellsTechniquesTestingTherapeuticTissuesTranscriptVariantdisease diagnosisgene correctiongene therapyinduced pluripotent stem cellinnovationnovelnucleaseparticlepre-clinicalprecision genomic medicineprecision medicineprogramsrepairedsmall moleculestem cell fatetime usetooltrafficking
项目摘要
There is a fundamental gap in understanding how several components of engineered gene-editing nucleases
achieve gene modification in human cells. Continued existence of this gap represents an important problem
because, until it is filled, use of genome surgery tools will be limited, as it is not clear why various nucleases fail
and why some succeed in producing desired gene edits. The long-term goal is to watch genome surgery in
action to understand the bottlenecks in performing genome surgery on human cells in vitro with precisely
controlled gene-editing particles, comprised of CRISPR-Cas9 components. Particles will be systematically
assembled with various components and delivered in a controlled fashion to patient-derived cells and tissues.
Live, in situ high content imaging and analysis within customized cell substrates will monitor genome surgery.
These capabilities will explore large sequence variation of CRISPR-Cas9 components along with new
assemblies of CRISPR-Cas9 components. The central hypothesis is that new assemblies of CRISPR-Cas9
particles can probe different biological processes of trafficking, DNA-double strand break formation and DNA
repair involved in genome surgery. This hypothesis will be tested with respect to generating two types of gene
edits involving non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways at several
genomic loci within patient-derived stem cells and tissues. An overarching rationale for the proposed research
programs is that robust gene editing techniques could enable the production of personalized drugs, cell
therapies and gene therapies for future genomic and precision medicine. Guided by strong preliminary data,
this hypothesis will be tested by pursuing three research programs: 1) Assemble Cas9 particles to identify
biological processes that promote "reporter-less" transcript tagging of stem cell fate in culture; 2) Assemble
Cas9 particles to identify biological processes that promote gene correction of diseased mutations in stem
cells; and, 3) Assemble Cas9 particles to identify biological processes that promote gene correction of
diseased mutations in microtissues. Under the first research program, an already proven platform, to assemble
hundreds of unique Cas9 particles and edit patient-derived cells in a multiplexed manner, will be used to
monitor the production of small gene edits by NHEJ within stem cell marker genes. Under the second and third
research programs, this platform will be applied to gene-correct diseased mutations via HDR in induced
pluripotent stem cells and microtissues matured from them. The approach is innovative, in the applicant's
opinion, because it departs from the status quo by systematically changing multiple components at a time
using novel methods in patient-derived cells. The proposed research is significant, because it is expected to
advance and expand understanding of how genome surgery tools can be applied for the generation of
advanced therapeutics, ranging from targeted small molecules to autologous cell therapies. Ultimately, such
knowledge has the potential to set the foundation for new preclinical platforms in Precision Medicine.
在理解工程基因编辑核酸酶的几个组成部分是如何存在一个根本的差距
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishanu Saha其他文献
Krishanu Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishanu Saha', 18)}}的其他基金
The CRISPR Vision Program: Nonviral Genome Editing Platforms to Treat Inherited Retinal Channelopathies
CRISPR 视觉计划:治疗遗传性视网膜通道病的非病毒基因组编辑平台
- 批准号:
10668161 - 财政年份:2023
- 资助金额:
$ 36.98万 - 项目类别:
Streamlined development of an IND with the silica nanocapsule loaded with Cas9 genome editors to disrupt the dominant BEST1 mutant allele
使用装载有 Cas9 基因组编辑器的二氧化硅纳米胶囊简化 IND 的开发,以破坏占主导地位的 BEST1 突变等位基因
- 批准号:
10668168 - 财政年份:2023
- 资助金额:
$ 36.98万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10618322 - 财政年份:2016
- 资助金额:
$ 36.98万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10410499 - 财政年份:2016
- 资助金额:
$ 36.98万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9335383 - 财政年份:2016
- 资助金额:
$ 36.98万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10206480 - 财政年份:2016
- 资助金额:
$ 36.98万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 36.98万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 36.98万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 36.98万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 36.98万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 36.98万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 36.98万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 36.98万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 36.98万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 36.98万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 36.98万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




