The CRISPR Vision Program: Nonviral Genome Editing Platforms to Treat Inherited Retinal Channelopathies
CRISPR 视觉计划:治疗遗传性视网膜通道病的非病毒基因组编辑平台
基本信息
- 批准号:10668161
- 负责人:
- 金额:$ 615.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressAdverse eventAffectAnimal ModelAnimalsAnniversaryBlindnessCRISPR/Cas technologyCell Culture TechniquesCellsCellular AssayClinicClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexDataDependovirusDevelopmentDiseaseDoseElementsEuropeanEyeEye diseasesFaceGenesGenomeGenotypeGood Manufacturing ProcessGuide RNAHumanHuman GenomeImmune responseImmunosuppressionIndustryInheritedInvestigational DrugsInvestmentsIon ChannelKnowledgeLeadLearningLeber&aposs amaurosisLiverMedicineMessenger RNAModelingMutationNobel PrizeNonhomologous DNA End JoiningOrganoidsPalpablePaperPathologicPatientsPharmaceutical PreparationsPhotoreceptorsPreclinical TestingProteinsPublishingRare DiseasesRecombinant adeno-associated virus (rAAV)ResearchRetinaRetinal DiseasesRibonucleoproteinsSafetySilicon DioxideSomatic CellSpecificityStructure of retinal pigment epitheliumSystemTP53 geneTechnologyTestingTherapeuticTherapeutic EffectTimeTissuesTranslatingTranslational ResearchTranslationsViralViral VectorVisionVitelliform macular dystrophybase editorclinic readyexperiencegenome editingin vivoinduced pluripotent stem cellinnovationinterestmanufacturemouse modelnanocapsulenext generationnonhuman primatenovelnucleasepostmitoticpre-clinicalprogramsrepairedresponsesupply chainsynergismtherapeutic genome editingvector
项目摘要
PROJECT SUMMARY/ABSTRACT – OVERALL
The genome editing community is celebrating the ten-year anniversary of landmark CRISPR papers in 2022.
What is notable to many in the field is tremendous technological advances in editing precision and versatility,
along with a Nobel Prize and billions of dollars of investment. However, there is a palpable sense that these
advances have not been translated into valuable drugs at a sufficient rate. In vivo gene editing still faces
substantial challenges, especially when it comes to safety, efficacy, and delivery. While the development of
EDIT-101, a viral vector carrying Cas9 to treat a rare retinal disorder (BRILLIANCE trial), provided a clear path
to the clinic for a genome editing therapeutic program, this path can be challenging to follow for others in the
field interested in developing human therapeutics. Viral strategies have several limitations involving an immune
response to vector elements and prolonged expression of the editor for the lifetime of the patient, heightening
off-target concerns. Newer editors like base editors cannot be readily packaged into common viral vectors, plus
there is a challenging supply chain for viral vector manufacturing. We seek to overcome the limitations with viral
delivery systems by using novel nonviral delivery systems termed the Silica NanoCapsule (SNC) and Target
Active Gene Editors (TAGE). They can efficiently deliver genome editors to the retina with high efficiency,
reaching levels of 10-70% that are among the best for nonviral delivery of editors to the eye and comparable to
viral delivery systems. Based on our strong published and preliminary data we propose to develop nonviral gene
editing products to treat Best Disease (BD) and Leber Congenital Amaurosis (LCA), two diseases affecting
ion channels of the retinal pigment epithelium (i.e., RPE channelopathies). Our team, spanning academia and
industry, will pursue the following aims. In Overall Aim 1, we evaluate the clinical readiness of a genome editor
targeting a post-mitotic cell through transient, localized, and nonviral delivery. To date, outside of the liver, only
viral editors have reached an IND for in vivo editing. Here, we rigorously evaluate the potential of our SNC and
TAGE nonviral delivery systems for the treatment of LCA and BD. We invest our most significant effort into the
Lead Project 1 that develops a base editor within a SNC. This project will reach an IND within five years and
provide synergy for other projects. In Overall Aim 2, we create a platform that can address many rare diseases
of the eye by streamlined manufacturing of different guides with a simple pipeline for preclinical testing. In Overall
Aim 3, we provide the SCGE Consortium and broader genome editing field a set of regulatory interactions that
clarifies development path to the clinic for new gene editing therapies. Finally, through our experience with BD,
we expect to learn about the regulatory path in developing somatic cell genome editors for scenarios when no
suitable animal model exists. Because the majority of known pathological mutations in the eye have no suitable
animal models, sharing this knowledge will have a large impact on subsequent genome editing leads.
项目总结/摘要-总体
基因组编辑社区正在庆祝2022年具有里程碑意义的CRISPR论文发表十周年。
对该领域的许多人来说,值得注意的是编辑精度和多功能性方面的巨大技术进步,
沿着而来的是诺贝尔奖和数十亿美元的投资。然而,有一种明显的感觉,
这些进展没有以足够的速度转化为有价值的药物。体内基因编辑仍面临
这是一个巨大的挑战,特别是在安全性,有效性和交付方面。尽管制订
EDIT-101是一种携带Cas9的病毒载体,用于治疗一种罕见的视网膜疾病(BRILLIANCE试验),
对于基因组编辑治疗计划的诊所来说,这条道路对于其他人来说可能是具有挑战性的。
致力于开发人类疗法的领域。病毒策略有几个局限性,涉及免疫
对矢量元素的反应和编辑器的终身表达,提高
偏离目标的问题较新的编辑器,如基础编辑器,不能容易地包装到常见的病毒载体中,
病毒载体制造的供应链具有挑战性。我们试图克服病毒的局限性,
通过使用称为二氧化硅纳米胶囊(SNC)和靶向的新型非病毒递送系统,
Active Gene Editors(TAGE).它们可以高效地将基因组编辑器输送到视网膜,
达到10-70%的水平,这是最好的非病毒交付编辑的眼睛和可比的,
病毒输送系统。基于我们强有力的已发表和初步数据,我们建议开发非病毒基因,
编辑产品,以治疗最好的疾病(BD)和利伯先天性黑蒙(LCA),两种疾病影响
视网膜色素上皮的离子通道(即,RPE通道病)。我们的团队,跨越学术界和
工业,将追求以下目标。在总体目标1中,我们评估了基因组编辑器的临床准备情况
通过瞬时、局部和非病毒递送靶向有丝分裂后细胞。到目前为止,在肝脏之外,只有
病毒编辑器已经达到了用于体内编辑的IND。在这里,我们严格评估SNC的潜力,
用于治疗LCA和BD的TAGE非病毒递送系统。我们将最大的努力投入到
领导项目1,在SNC中开发基本编辑器。该项目将在五年内达到IND,
为其他项目提供协同效应。在总体目标2中,我们创建了一个可以解决许多罕见疾病的平台
通过使用简单的临床前测试流水线生产不同的导向器,整体
目标3,我们为SCGE联盟和更广泛的基因组编辑领域提供了一套调控相互作用,
阐明了新基因编辑疗法的临床发展路径。最后,通过我们在BD的经验,
我们希望了解在开发体细胞基因组编辑器的情况下,
存在合适的动物模型。因为大多数已知的眼部病理性突变没有合适的
动物模型,分享这些知识将对随后的基因组编辑线索产生很大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishanu Saha其他文献
Krishanu Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishanu Saha', 18)}}的其他基金
Streamlined development of an IND with the silica nanocapsule loaded with Cas9 genome editors to disrupt the dominant BEST1 mutant allele
使用装载有 Cas9 基因组编辑器的二氧化硅纳米胶囊简化 IND 的开发,以破坏占主导地位的 BEST1 突变等位基因
- 批准号:
10668168 - 财政年份:2023
- 资助金额:
$ 615.91万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10618322 - 财政年份:2016
- 资助金额:
$ 615.91万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9142548 - 财政年份:2016
- 资助金额:
$ 615.91万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10410499 - 财政年份:2016
- 资助金额:
$ 615.91万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10206480 - 财政年份:2016
- 资助金额:
$ 615.91万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9335383 - 财政年份:2016
- 资助金额:
$ 615.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 615.91万 - 项目类别:
Research Grant