in vivo imaging of circuit remodeling in mouse visual cortex
小鼠视觉皮层回路重塑的体内成像
基本信息
- 批准号:10207000
- 负责人:
- 金额:$ 38.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2023-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyArchitectureBrainBrain DiseasesCellsColorDark AdaptationDevelopmentElementsEventExcitatory SynapseExtracellular ProteinFailureFundingGenesGlycosylphosphatidylinositolsGoalsImaging technologyImpairmentInhibitory SynapseKnockout MiceKnowledgeLabelLateralLateral Geniculate BodyLeadLearningLinkMapsMediator of activation proteinMemoryMethodsMicroscopeMicroscopyMolecularMonitorMusNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsParvalbuminsPhysiologicalProcessProteinsProteomeProteomicsRecording of previous eventsResolutionSensorySomatostatinSpecificityStructureSynapsesTestingThalamic structureTissuesVertebral columnVisualVisual CortexVisual PerceptionVisual system structureexperiencefluorophorefunctional adaptationgene producthippocampal pyramidal neuronin vivoin vivo imagingin vivo monitoringinnovationmonocular deprivationneural circuitoperationpostsynapticpostsynaptic density proteinrecruitresponsesynaptogenesistemporal measurementtwo photon microscopytwo-photonvisual deprivation
项目摘要
Many brain disorders manifest impaired synaptic integrity, stability, and experience-dependent selection,
resulting in wiring deficits and perturbed function. Unfortunately, our ability to monitor synaptic or circuit failures
as they occur has been hindered by the difficulty of visualizing synapses in vivo. Here we propose in vivo
monitoring of the ‘order of operations’ in synapse formation and elimination, and identifying the steps and
molecules controlling experience-dependent synapse selection. We focus on the visual system, where there is
a well-characterized toolkit for manipulating experience. We hypothesize that the dynamics of a synapse's
assembly and disassembly, and its propensity to remodel, are intimately linked to its connection identity and
proteomic content. To test this, we propose the following aims: Aim1: To track the structural remodeling of
inhibitory synapses and how it relates to their afferent input specificity and proteomic content. We will
label Somatostatin and Parvalbumin inputs onto the full dendritic arbor of single L2/3 pyramidal neurons in mouse
visual cortex, track their daily dynamics and their response to monocular deprivation, and analyze their proteomic
content in relation to dynamic history and afferent identity. To this purpose, we will implement triple color two-
photon microscopy to simultaneously track, in vivo, both pre- and postsynaptic elements of inhibitory synapses,
followed by Magnified Analysis of Proteome (MAP), a combination of tissue clearing and expansion microscopy,
for super resolution analysis of synaptic protein content across the entire neuron. Aim 2: To track the structural
remodeling of excitatory synapses and how it relates to their afferent input specificity and proteomic
content. Using a similar strategy as in Aim 1, we will discriminate general thalamic, LGN, and LP inputs to
excitatory synapses across the arbor of L2/3 pyramidal neurons, track their daily dynamics and response to dark
adaptation, and analyze their proteomic content in relation to dynamic history and afferent identity. Aim 3: To
dissect, at a molecular level, experience-dependent selection and stabilization of excitatory synapses.
CPG15/neuritin is an activity-regulated gene product critical for synapse stabilization and maturation. In vivo
imaging in WT and CPG15 knockout mice revealed that while spine formation occurs normally in the absence of
visual experience or CPG15, in both cases PSD95 recruitment to nascent spines is deficient. CPG15 expression
in the absence of activity is sufficient to restore normal PSD95 recruitment and spine stabilization, suggesting it
acts as an activity-dependent synapse selector. We ask how CPG15 loss impacts molecular events in synapse
formation and maturation. Aim 4: To develop and implement spectrally resolved two-photon microscopy
for simultaneous tracking of four distinct genetically encoded fluorophores marking different cellular
proteins. We will develop new labeling and two-photon microscope configurations for in vivo monitoring of up to
four synaptic components at once, with options for addressing a variety of experimental questions.
许多脑部疾病表现为突触完整性、稳定性和经验依赖性选择受损,
导致线路缺陷和功能紊乱。不幸的是,我们监测突触或电路故障的能力
由于难以在体内观察突触而受到阻碍。在这里,我们建议在体内
监测突触形成和消除中的“操作顺序”,并确定步骤和
控制经验依赖性突触选择的分子我们专注于视觉系统,
这是一个很好的操纵经验的工具包。我们假设突触的动力学
组装和拆卸,以及它的改造倾向,与它的连接身份密切相关,
蛋白质组含量为了验证这一点,我们提出了以下目标:目标1:跟踪结构重塑
抑制性突触以及它如何与它们的传入输入特异性和蛋白质组含量相关。我们将
小鼠L2/3锥体神经元树突状细胞标记生长抑素和小清蛋白
视觉皮质,跟踪他们的日常动态以及他们对单眼剥夺的反应,并分析他们的蛋白质组
与动态历史和传入身份有关的内容。为此,我们将实施三色二-
光子显微术,以在体内同时跟踪抑制性突触的突触前和突触后元件,
随后是蛋白质组的磁共振分析(MAP),组织清除和扩张显微镜的组合,
用于对整个神经元的突触蛋白含量进行超分辨率分析。目标2:跟踪结构
兴奋性突触的重塑及其与传入输入特异性和蛋白质组学的关系
内容使用与目标1中类似的策略,我们将区分一般丘脑,LGN和LP输入,
兴奋性突触穿过L2/3锥体神经元的乔木,跟踪它们的日常动力学和对黑暗的反应。
适应,并分析其蛋白质组内容的动态历史和传入身份。目标3:
在分子水平上剖析兴奋性突触的经验依赖性选择和稳定性。
CPG 15/neuritin是一种活性调节的基因产物,对突触稳定和成熟至关重要。体内
WT和CPG 15基因敲除小鼠的成像显示,尽管在缺乏CPG 15基因的情况下,
视觉经验或CPG 15,在这两种情况下,新生脊柱的PSD 95募集都是不足的。CPG 15表达
在缺乏活动的情况下,足以恢复正常的PSD 95募集和脊柱稳定,这表明
充当活动依赖性突触选择器。我们问CPG 15损失如何影响突触中的分子事件
形成和成熟。目标4:开发和实现光谱分辨双光子显微镜
用于同时跟踪标记不同细胞的四种不同的遗传编码荧光团
proteins.我们将开发新的标记和双光子显微镜配置,用于体内监测高达
一次四个突触组件,有解决各种实验问题的选择。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spine Dynamics: Are They All the Same?
- DOI:10.1016/j.neuron.2017.08.008
- 发表时间:2017-09-27
- 期刊:
- 影响因子:16.2
- 作者:Berry KP;Nedivi E
- 通讯作者:Nedivi E
Functional implications of inhibitory synapse placement on signal processing in pyramidal neuron dendrites.
- DOI:10.1016/j.conb.2018.01.013
- 发表时间:2018-08
- 期刊:
- 影响因子:5.7
- 作者:Boivin JR;Nedivi E
- 通讯作者:Nedivi E
CPG15/Neuritin Mimics Experience in Selecting Excitatory Synapses for Stabilization by Facilitating PSD95 Recruitment.
CPG15/Neuritin 模仿通过促进 PSD95 招募来选择兴奋性突触以实现稳定的经验。
- DOI:10.1016/j.celrep.2019.07.012
- 发表时间:2019
- 期刊:
- 影响因子:8.8
- 作者:Subramanian,Jaichandar;Michel,Katrin;Benoit,Marc;Nedivi,Elly
- 通讯作者:Nedivi,Elly
Experience-Dependent Structural Plasticity in the Visual System.
- DOI:10.1146/annurev-vision-111815-114638
- 发表时间:2016-10-14
- 期刊:
- 影响因子:6
- 作者:Berry KP;Nedivi E
- 通讯作者:Nedivi E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elly Nedivi其他文献
Elly Nedivi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elly Nedivi', 18)}}的其他基金
Developing a Strategy for 4-Color in Vivo Two-Photon Imaging
开发体内四色双光子成像策略
- 批准号:
10577846 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10708899 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Developing a strategy for 4-color in vivo two-photon imaging
开发 4 色体内双光子成像策略
- 批准号:
10459675 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10512611 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10467534 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9042367 - 财政年份:2015
- 资助金额:
$ 38.78万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
9021702 - 财政年份:2015
- 资助金额:
$ 38.78万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
8878595 - 财政年份:2015
- 资助金额:
$ 38.78万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9254550 - 财政年份:2015
- 资助金额:
$ 38.78万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Studentship














{{item.name}}会员




