Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
基本信息
- 批准号:10467534
- 负责人:
- 金额:$ 28.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-10 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseBindingBrainCell Culture TechniquesCellsChimeric ProteinsCognition DisordersColorCoupledDendritesDetectionDevelopmentDissociationElectron MicroscopyExhibitsFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferFunctional disorderGoalsHourImageIndividualLabelLifeLightMeasurementMeasuresMental disordersMethodsMicroscopeMicroscopyModificationMolecularMonitorMorphologic artifactsMotionMusNeurobiologyNeurodegenerative DisordersNeuronsOpticsPatternPerformancePhotonsPhysiologicalPresynaptic TerminalsProteinsPyramidal CellsResolutionScanningSchizophreniaSeriesSideSignal TransductionSiteSpecimenStructureSymptomsSynapsesSynaptic CleftSystemTechnology TransferTestingThickTimeTissuesVariantbasechemical bonddesigndetectorfluorophoreimaging approachimprovedin vivoin vivo evaluationin vivo monitoringintermolecular interactionmillisecondnanometernanosecondnovel strategiesparallelizationpostsynapticrelating to nervous systemresidencesynaptogenesistwo-photon
项目摘要
In spite of recent progress, our understanding of cognitive disorders remains tenuous. While outward
symptoms of neurodegenerative and mental disorders, ranging from Alzheimer’s to schizophrenia, are readily
apparent, their underlying cellular mechanisms are unclear. Most, if not all, exhibit some form of synaptic
dysfunction and/or circuit abnormality. Unfortunately, our ability to monitor disruptions in synapse or circuit
connectivity as they occur in vivo has been hindered by the difficulty of visualizing individual synaptic contacts
at sufficient resolution to discern their formation or elimination. The primary challenge for imaging synaptic
connections lies in the narrow cleft separation of 20-50 nm that is far below optical resolution. Here we propose
a new approach to identify synapse formation and dissociation in vivo by monitoring the distance between pre-
and post-synaptic protein pairs using fluorescence resonance energy transfer (FRET). In Specific aim 1 we will
develop wide-field depth-resolved FLIM-FRET by implementing De-scattering with Excitation Patterning (DEEP),
a wide-field depth resolved imaging approach based on structured light temporal focusing two-photon excitation
that we recently demonstrated is compatible with in vivo neural imaging. We propose implementing DEEP for
FLIM by using avalanche photodiode arrays with nanosecond gating to simultaneously resolve lifetimes with
over two thousand detectors. For testing microscope development, we will express in the mouse brain, in vivo,
known intramolecular FRET pairs using our previously developed methods for sparse, multi-fluorophore neuronal
labeling. In Specific aim 2 we will generate a series of FRET donor/acceptor molecules fused to variants of the
neuroligin-neurexin trans-synaptic partners in a variety of configurations, designed so that donor-acceptor
distance is kept within ~5 nm in the bound state for FRET to occur. These fusion constructs will be screened in
cultured neurons and selected based on faithful synaptic localization, lack of interference to normal synaptic
dynamics, and the presence of strong FRET signal upon fusion partner binding. The in vivo labeling strategy will
be a modification of one we recently developed for imaging Layer 2/3 pyramidal cell dendritic arbors and their
resident synapses in vivo using a three-color two-photon system, modified to avoid co-expression of donor and
acceptor in the same cell. The postsynaptic fusion protein will be co-expressed with a cell fill to visualize a single
targeted cell with all its postsynaptic sites. Where these sites contact labeled presynaptic terminals, transsynaptic
binding should place the fluorescent donor/acceptor pairs in close proximity, allowing FRET. Selected pairs will
then be tested in vivo in the brain for performance in the presence of autofluorescence and signal loss from
scattering in deep layers.
尽管最近取得了进展,但我们对认知障碍的理解仍然薄弱。而向外
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elly Nedivi其他文献
Elly Nedivi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elly Nedivi', 18)}}的其他基金
Developing a Strategy for 4-Color in Vivo Two-Photon Imaging
开发体内四色双光子成像策略
- 批准号:
10577846 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10708899 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Developing a strategy for 4-color in vivo two-photon imaging
开发 4 色体内双光子成像策略
- 批准号:
10459675 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10512611 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9042367 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
9021702 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
in vivo imaging of circuit remodeling in mouse visual cortex
小鼠视觉皮层回路重塑的体内成像
- 批准号:
10207000 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9254550 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
8878595 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:














{{item.name}}会员




