Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
基本信息
- 批准号:10708899
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsAffectAnatomyArchitectureBindingBrainBrain DiseasesCell NucleusCellsColorDevelopmentElectroporationElementsEventExcitatory SynapseExtracellular ProteinFailureGenesGlutamate ReceptorGlycosylphosphatidylinositolsGoalsImaging technologyImpairmentIndividualKnockout MiceLabelLateral Geniculate BodyLateral posterior nucleus of thalamusLeadLearningLinkMapsMediatorMemoryMethodsMicroscopyMolecularMonitorMusNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsPhysiologicalProteinsProteomeProteomicsRecording of previous eventsSensorySpecificitySynapsesSynaptophysinTestingTissuesTransgenic MiceTransmembrane DomainVertebral columnVisualVisual CortexVisual PerceptionVisual SystemVisualizationarea striataexperienceextracellularfluorophorefunctional adaptationgene producthippocampal pyramidal neuronin uteroin vitro Assayin vivoin vivo imagingin vivo monitoringinnovationmouse geneticsneural circuitoperationpostsynapticpostsynaptic density proteinpresynapticpreventprotein complexpupreceptorrecruitresponsestargazinsynaptic functionsynaptogenesistwo photon microscopyultra high resolutionvisual deprivation
项目摘要
Many brain disorders manifest impaired synaptic integrity, stability, and experience-dependent selection,
resulting in wiring deficits and perturbed function. Unfortunately, our ability to monitor synaptic or circuit failures
as they occur has been hindered by the difficulty of visualizing synapses in vivo. Here we propose in vivo
monitoring of the ‘order of operations’ in excitatory synapse formation and elimination, and identifying the steps
and molecules controlling experience-dependent synapse selection. We focus on the visual system, where there
is a well-characterized toolkit for manipulating experience. We hypothesize that the dynamics of a synapse's
assembly and disassembly, and its propensity to remodel, are intimately linked to its connection identity and
proteomic content. To test this, we propose the following aims: Aim1: To track the structural remodeling of
excitatory synapses and how it relates to their afferent input specificity and proteomic content. We will
label LGN or LP thalamic inputs onto the full dendritic arbor of single L2/3 pyramidal neurons in mouse visual
cortex, track their daily dynamics and their response to visual deprivation, and analyze their proteomic content
in relation to dynamic history and afferent identity. To this purpose, we will implement triple color two-photon
microscopy to simultaneously track, in vivo, both pre- and postsynaptic elements of excitatory synapses, followed
by Magnified Analysis of Proteome (MAP), a combination of tissue clearing and expansion microscopy, for super
resolution analysis of synaptic protein content across the entire neuron. Aim 2: To dissect, at a molecular
level, experience-dependent selection and stabilization of excitatory synapses. CPG15/neuritin is an
activity-regulated gene product critical for synapse stabilization and maturation. In vivo imaging in WT and
CPG15 knockout mice revealed that while spine formation occurs normally in the absence of visual experience
or CPG15, in both cases PSD95 recruitment to nascent spines is deficient. CPG15 expression in the absence
of activity is sufficient to restore normal PSD95 recruitment and spine stabilization, suggesting it acts as an
activity-dependent synapse selector. A puzzling aspect in this scenario is that CPG15 is extracellular while
PSD95 is intracellular, and neither has a transmembrane domain. Interestingly, CPG15 was previously identified
as part of the AMPA-type glutamate receptor (AMPAR) proteome. Yet, CPG15's mechanism of action remains
unclear. To probe CPG15's synaptic function, we will map the minimal CPG15 binding domain on the AMPAR,
and test whether preventing its interaction with CPG15 effects AMPAR interaction with stargazin, an adaptor
molecule that is essential for delivering, inserting, and retaining functional receptors at the PSD. To probe how
CPG15 binding influences AMPAR stability at the synapse and how this, in turn, effects synaptic presence of its
downstream interacting proteins, stargazin and PSD95, we will develop an in vitro assay for synaptic AMPAR
mobility. Finally, we will ask how loss of CPG15, as a surrogate of experience, impacts the molecular sequence
of synapse formation, stabilization, and maturation in vivo, using two photon microscopy followed by MAP.
许多脑部疾病表现为突触完整性、稳定性和经验依赖性选择受损,
导致线路缺陷和功能紊乱。不幸的是,我们监测突触或电路故障的能力
由于难以在体内观察突触而受到阻碍。在这里,我们建议在体内
监测兴奋性突触形成和消除中的“操作顺序”,并确定步骤
以及控制经验依赖性突触选择的分子。我们专注于视觉系统,
是一个很好的工具箱,用于操纵经验。我们假设突触的动力学
组装和拆卸,以及它的改造倾向,与它的连接身份密切相关,
蛋白质组含量为了验证这一点,我们提出了以下目标:目标1:跟踪结构重塑
兴奋性突触以及它如何与它们的传入输入特异性和蛋白质组内容相关。我们将
将LGN或LP丘脑输入标记到小鼠视觉中单个L2/3锥体神经元的完整树突上
皮层,跟踪他们的日常动态和他们对视觉剥夺的反应,并分析他们的蛋白质组内容
与动态历史和传入身份有关。为此,我们将实现三色双光子
显微镜同时跟踪,在体内,兴奋性突触的突触前和突触后元素,
通过蛋白质组的磁共振分析(MAP),组织清除和扩张显微镜的组合,
整个神经元中突触蛋白含量的分辨率分析。目的2:解剖,在分子
水平、经验依赖性选择和兴奋性突触的稳定。CPG 15/neuritin是一种
活性调节基因产物,对突触稳定和成熟至关重要。在WT中的体内成像和
CPG 15基因敲除小鼠显示,虽然在缺乏视觉经验的情况下,
或CPG 15,在这两种情况下,PSD 95向新生棘的募集都是缺陷的。CPG 15表达缺失
的活性足以恢复正常的PSD 95募集和脊柱稳定,这表明它作为一种
活动依赖性突触选择器。在这种情况下,一个令人困惑的方面是CPG 15是细胞外的,
PSD 95是细胞内的,并且两者都没有跨膜结构域。有趣的是,CPG 15以前被鉴定为
作为AMPA型谷氨酸受体(AMPAR)蛋白质组的一部分。然而,CPG 15的作用机制仍然存在,
不清楚为了探测CPG 15的突触功能,我们将在AMPAR上定位最小的CPG 15结合结构域,
并测试阻止其与CPG 15的相互作用是否影响AMPAR与衔接子stargazin的相互作用
在PSD处递送、插入和保留功能性受体所必需的分子。为了探究
CPG 15结合影响突触处AMPAR的稳定性,以及这反过来如何影响其在突触中的存在。
下游相互作用蛋白,stargazin和PSD 95,我们将开发一种体外测定突触AMPAR
迁移率最后,我们将询问作为经验替代物的CPG 15的缺失如何影响分子序列。
突触的形成,稳定和成熟在体内,使用双光子显微镜,然后MAP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elly Nedivi其他文献
Elly Nedivi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elly Nedivi', 18)}}的其他基金
Developing a Strategy for 4-Color in Vivo Two-Photon Imaging
开发体内四色双光子成像策略
- 批准号:
10577846 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Developing a strategy for 4-color in vivo two-photon imaging
开发 4 色体内双光子成像策略
- 批准号:
10459675 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10512611 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10467534 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9042367 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
9021702 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
in vivo imaging of circuit remodeling in mouse visual cortex
小鼠视觉皮层回路重塑的体内成像
- 批准号:
10207000 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
8878595 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9254550 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists