Engineered salivary gland tissue chips
工程唾液腺组织芯片
基本信息
- 批准号:10224168
- 负责人:
- 金额:$ 98.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcinar CellAdhesivesAffectAmylasesBenchmarkingBiochemicalCapsid ProteinsCell CountCell SurvivalCell physiologyCellsCharacteristicsChronicCouplingCrosslinkerCuesDNA DamageDataDependenceDevelopmentDiagnosisDuct (organ) structureDuctal Epithelial CellElastomersEncapsulatedEndotheliumEngineeringExhibitsExtracellular Matrix ProteinsFDA approvedGelGeneticGlandGoalsHead and Neck CancerHumanHydrogelsImmune systemIn VitroLabelLengthLibrariesMaintenanceMatrix MetalloproteinasesMicrobubblesModelingMoldsMusNatureNerveOpticsOutcomeParacrine CommunicationPatientsPeptidesPharmaceutical PreparationsPharmacological TreatmentPhasePhenotypePlasmaPolymersPreventionProlactinProteinsRadiationRadiation ProtectionRadiation ToleranceRadiation induced damageRadiation therapyRadiation-Protective AgentsResolutionSalivaSalivarySalivary Gland TissueSalivary GlandsSignal TransductionSliceStainsStructureTechnologyTestingTherapeuticTissue MicroarrayTissuesXerostomiaautocrinebasebiomaterial compatibilitycholinergicchromatin immunoprecipitationdensitydrug efficacydrug repurposingethylene glycolhead and neck cancer patienthigh throughput screeninghuman tissueimprovedin vivoirradiationmicrophysiology systemmimeticsmouse modelparacrinepolydimethylsiloxanepreservationregenerativeregenerative approachscreeningsecretory proteinself assemblystemstem cellstool
项目摘要
Abstract: For more than 550,000 patients annually diagnosed with head and neck cancers worldwide, severe
loss of salivary gland function (xerostomia) is an unavoidable outcome of radiation therapy. There are
presently no reliable and safe pharmacologic treatments for the resolution or prevention of radiation-induced
xerostomia. Efforts to study radiosensitivity to discover effective radioprotective and regenerative strategies
have been hampered by the inability to culture salivary gland mimetics in vitro, due to loss of secretory acinar
cell phenotype. The principal milestone of this proposal is to engineer functional human salivary gland tissue
chips to overcome this obstacle. Our labs have pioneered the use of hydrogel encapsulation to culture salivary
gland cells in vitro. We have successfully demonstrated salivary gland cell survival up to 1 month post-
encapsulation. Furthermore, cells organize into structures with apicobasal polarity and express secretory
acinar markers, including Mist1. Although these data are promising, secretory marker expression is reduced
compared to the native gland. Furthermore, the macroscale nature of hydrogels precludes their high-
throughput use. Thus, we will utilize our microbubble (MB) array technology as a high-throughput, modular
platform for the tissue chips. MBs are micron-scale spherical cavities molded in polydimethylsiloxane (PDMS).
MBs have the advantage of length scales and curvatures similar to the secretory acinar unit of glands,
providing a niche that promotes cell-cell contact and the concentration autocrine and paracrine factors that
have been shown to enhance tissue assembly. Furthermore, MBs can be integrated with other
microphysiological systems such as endothelial, nerve, and immune system chips. During the UG3 phase of
this project, the go/no-go criteria will be the use of the MB platform to develop human gland tissue mimetics
capable of long-term secretory function. Specifically for UG3, Aim 1 will use genetically labeled mouse acinar
and duct cells to identify culture characteristics that maximize gland tissue mimetic function. Acinar and duct
cell seeding ratios and densities will be varied in ‘blank’, extracellular matrix protein-functionalized, and in
hydrogels all within MBs. Aim 2 (UG3) will validate the ability of human salivary gland cells to cellularly
organize and maintain function in our previously developed macrogels and in within hydrogels in MBs, similarly
to mouse cells in Aim 1. Our goal is to demonstrate functional human gland mimetic development in MB arrays
by end of UG3. If successful, the UH3 phase will investigate hydrogel microenvironmental cues to further
promote gland mimetic organization and function. Finally, Aim 3 will demonstrate the utility of gland mimetics
by screening FDA-approved drugs to identify effective radioprotective agents. These compounds will be
retroductally injected into mice to validate radioprotective potential. Successful development of salivary tissue
chips will be transformative; by enabling in vitro analysis of functional gland mimetics, our ability to pursue
therapeutic strategies, radioprotective and regenerative, will be dramatically improved.
摘要:全球每年有超过 550,000 名头颈癌患者被诊断出患有严重的头颈癌。
唾液腺功能丧失(口干症)是放射治疗不可避免的结果。有
目前尚无可靠且安全的药物治疗方法来解决或预防辐射引起的
口干症。努力研究放射敏感性以发现有效的放射防护和再生策略
由于分泌性腺泡的丧失,无法在体外培养唾液腺模拟物,从而阻碍了这项研究
细胞表型。该提案的主要里程碑是设计功能性人类唾液腺组织
克服这一障碍的芯片。我们的实验室率先使用水凝胶封装来培养唾液
体外的腺细胞。我们已成功证明唾液腺细胞在术后 1 个月内存活
封装。此外,细胞组织成具有顶端基底极性的结构并表达分泌
腺泡标记物,包括 Mist1。尽管这些数据很有希望,但分泌标记物的表达有所减少
与天然腺体相比。此外,水凝胶的宏观性质阻碍了它们的高
吞吐量使用。因此,我们将利用我们的微泡 (MB) 阵列技术作为高通量、模块化
组织芯片的平台。 MB 是用聚二甲基硅氧烷 (PDMS) 模制而成的微米级球形空腔。
MB 的优点是长度尺度和曲率类似于腺体的分泌腺泡单位,
提供促进细胞间接触的利基以及自分泌和旁分泌因子的浓度
已被证明可以增强组织组装。此外,MB 可以与其他
微生理系统,如内皮、神经和免疫系统芯片。在UG3阶段
该项目的通过/不通过标准将是使用 MB 平台开发人体腺组织模拟物
具有长期的分泌功能。专门针对 UG3,目标 1 将使用基因标记的小鼠腺泡
和导管细胞,以确定最大化腺体组织模拟功能的培养特征。腺泡和导管
细胞接种比例和密度在“空白”、细胞外基质蛋白功能化和“空白”中会有所不同
水凝胶都在MB内。目标 2 (UG3) 将验证人类唾液腺细胞细胞分化的能力
类似地,在我们之前开发的大凝胶和 MB 中的水凝胶中组织和维持功能
目标 1 中的小鼠细胞。我们的目标是在 MB 阵列中展示功能性人类腺体模拟发育
到 UG3 结束时。如果成功,UH3 阶段将研究水凝胶微环境线索,以进一步
促进腺体模仿组织和功能。最后,目标 3 将展示腺体模拟物的实用性
通过筛选 FDA 批准的药物来识别有效的辐射防护剂。这些化合物将
逆行注射到小鼠体内以验证辐射防护潜力。唾液组织发育成功
芯片将带来变革;通过对功能性腺体模拟物进行体外分析,我们有能力追求
放射防护和再生治疗策略将得到显着改善。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle S. Benoit其他文献
Danielle S. Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle S. Benoit', 18)}}的其他基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 98.25万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10467753 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10461486 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10681217 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10612076 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Bone-targeted polymer therapeutics for nonunion fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10371267 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10733942 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10709483 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
hiPSC-derived tissue mimetics of the retina blood barrier
hiPSC 衍生的视网膜血屏障组织模拟物
- 批准号:
10080730 - 财政年份:2020
- 资助金额:
$ 98.25万 - 项目类别:
Engineered salivary gland tissue chips (Administrative Supplement)
工程唾液腺组织芯片(行政补充)
- 批准号:
10426429 - 财政年份:2017
- 资助金额:
$ 98.25万 - 项目类别:
相似海外基金
Regulation of acinar cell function
腺泡细胞功能的调节
- 批准号:
RGPIN-2018-06444 - 财政年份:2022
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Grants Program - Individual
Regulation of acinar cell function
腺泡细胞功能的调节
- 批准号:
RGPIN-2018-06444 - 财政年份:2021
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Grants Program - Individual
Regulation of acinar cell function
腺泡细胞功能的调节
- 批准号:
RGPIN-2018-06444 - 财政年份:2020
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of the developmental mechanism of pancreatic acinar cell metaplasia in stomach
胃胰腺腺泡细胞化生发育机制的阐明
- 批准号:
20K16985 - 财政年份:2020
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on carcinogenesis and cell differentiation using established human pancreatic acinar cell carcinoma cell line
利用已建立的人胰腺腺泡细胞癌细胞系进行癌发生和细胞分化的研究
- 批准号:
19K07518 - 财政年份:2019
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of SPCA2C in acinar cell function
SPCA2C 在腺泡细胞功能中的表征
- 批准号:
539767-2019 - 财政年份:2019
- 资助金额:
$ 98.25万 - 项目类别:
University Undergraduate Student Research Awards
Regulation of acinar cell function
腺泡细胞功能的调节
- 批准号:
RGPIN-2018-06444 - 财政年份:2019
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Grants Program - Individual
The study to detect early-stage pancreatic cancer based on the data from molecular biology about the atrophic acinar cell surrounding carcinoma in situ.
该研究基于原位癌周围萎缩性腺泡细胞的分子生物学数据来检测早期胰腺癌。
- 批准号:
18K07897 - 财政年份:2018
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation of acinar cell function
腺泡细胞功能的调节
- 批准号:
RGPIN-2018-06444 - 财政年份:2018
- 资助金额:
$ 98.25万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the role of BRG1 in acinar cell-derived pancreatic tumorigenesis
BRG1 在腺泡细胞源性胰腺肿瘤发生中的作用研究
- 批准号:
17H06805 - 财政年份:2017
- 资助金额:
$ 98.25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




