Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
基本信息
- 批准号:10461486
- 负责人:
- 金额:$ 16.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-20 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffinityAnimalsAreaArticular Range of MotionBindingBone callusBone remodelingCell LineageCellsCicatrixDataDiseaseDrug ControlsDrug Delivery SystemsFOLH1 geneFibrosisFractureFrequenciesGenesGeneticGenetic TranscriptionHistologicHistologyHomeHomingImpairmentIn VitroInflammatoryInflammatory ResponseInjectionsInjuryKineticsKnowledgeLabelMaleic AnhydrideMechanicsMediatingMesenchymalModelingMolecularMolecular ProfilingMorphologyMusMyelogenousMyeloid CellsNatural regenerationOperative Surgical ProceduresOsteoclastsOutcomePathologicPeptidesPharmaceutical PreparationsPharmacologyPharmacotherapyPopulationProcessRecovery of FunctionReporterRiskS100A4 geneSiteStyrenesSystemTendon InjuriesTendon structureTestingTherapeuticTimeLineTissuesTranslationsWorkbasebonebone fracture repaircell typefunctional disabilityfunctional restorationhealinghigh rewardhigh riskimprovedimproved functioningin vivoin vivo imaginginhibitorinnovationknock-downleukemiamacrophagemechanical propertiesmouse modelnanoparticlenanoparticle deliverynanoparticle drugnew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticsregenerativerepairedresponsesmall moleculetargeted treatmenttartrate-resistant acid phosphatasetherapeutic targettranscriptomicstranslational potentialuptake
项目摘要
Project Summary
Following injury, tendons heal via a fibrotic scar-tissue response that impedes full functional restoration.
Translation of pharmacotherapies to enhance tendon healing has been hampered by a combination of limited
tendon targeting of systemic treatments, and insufficient identification of biologically informed therapeutic
targets. In this high-risk high-reward study we will address both of these critical knowledge gaps. We have
recently identified genetic knockdown of S100a4 as a novel model of functionally-enhanced tendon healing,
thereby identifying S100a4 as a novel therapeutic target to improve tendon healing. Moreover, we have used
spatial transcriptomic profiling to define the spatially distinct molecular processes that dictate the fibrotic tendon
healing process. Using this approach we defined a macrophage-rich cluster located between the highly
reactive tendon stubs at the injury site. This cluster was defined by enriched expression of Acp5, the gene
encoding for TRAP (Tartrate resistant acid phosphatase). Our preliminary data further demonstrate regions of
robust TRAP activity in the healing tendon. Here, we will capitalize on this exciting finding by leveraging our
work using a TRAP binding peptide (TBP) conjugated nanoparticle (NP) drug delivery system. We have
demonstrated enhanced homing and retention of TBP-NPs at sites of high TRAP activity including the bone
fracture callus and during pathologic bone remodeling. Here, we will test the central hypothesis that TRAP
binding peptide loaded nanoparticles (TBP-NPs) efficiently home to the healing tendon, are taken up by
macrophages and that TBP-NP delivery of an S100a4 inhibitor enhances tendon regeneration compared to
control TBP-NPs. In Aim 1 we will track the systemic and tendon-specific localization and retention of
systemically administered fluorescently labelled TBP-NPs compared to scrambled control peptide-NPs. In
addition, we will use a combination of cell-type specific fluorescent reporter mouse models to define the
specific cell populations that uptake TBP-NPs during tendon healing. In Aim 2 we will define the loading and
release profile of an S100a4 inhibitor on TBP-NPs and define the efficacy of TBP-NP drug delivery, compared
to free drug and control NPs, to inhibit S100a4 expression and enhance the tendon healing process.
Successful completion of these studies will establish a novel nanoparticle-mediate delivery system to target the
healing tendon with high efficiency and efficacy, thereby substantially enhancing the translational feasibility of
pharmacologically mediating improved tendon healing.
项目摘要
损伤后,肌腱通过纤维化瘢痕组织反应愈合,阻碍了完全功能恢复。
药物治疗促进肌腱愈合的转化受到限制,
全身性治疗的肌腱靶向,以及生物信息治疗的识别不足
目标的在这项高风险高回报的研究中,我们将解决这两个关键的知识差距。我们有
最近鉴定了S100 a4的基因敲除作为功能增强肌腱愈合的新模型,
从而将S100 a4鉴定为改善肌腱愈合的新的治疗靶点。此外,我们还使用
空间转录组学分析,以确定支配纤维化肌腱的空间上不同的分子过程
愈合过程使用这种方法,我们定义了一个富含巨噬细胞的集群,位于高度
损伤部位的反应性肌腱残端。该簇是通过基因Acp 5的富集表达来定义的
编码TRAP(抗酒石酸酸性磷酸酶)。我们的初步数据进一步表明,
在愈合的肌腱中具有强大的TRAP活性。在这里,我们将利用这一令人兴奋的发现,
使用TRAP结合肽(TBP)缀合的纳米颗粒(NP)药物递送系统工作。我们有
证明了TBP-NP在包括骨在内的高TRAP活性位点的增强的归巢和保留
骨折骨痂和病理性骨重建期间。在这里,我们将测试中心假设,即陷阱
结合肽负载的纳米颗粒(TBP-NPs)有效地回到愈合肌腱,被
与巨噬细胞相比,TBP-NP递送S100 a4抑制剂增强了肌腱再生。
对照TBP-NP。在目标1中,我们将跟踪系统和肌腱特异性定位和保留,
与乱序对照肽-NP相比,全身施用的荧光标记的TBP-NP。在
此外,我们将使用细胞类型特异性荧光报告小鼠模型的组合来定义
在肌腱愈合过程中摄取TBP-NP的特定细胞群。在目标2中,我们将定义负载,
S100 a4抑制剂在TBP-NP上的释放曲线,并定义TBP-NP药物递送的功效,比较
游离药物和对照NP,抑制S100 a4表达并增强肌腱愈合过程。
这些研究的成功完成将建立一种新的纳米颗粒介导的传递系统,以靶向
以高效率和功效愈合肌腱,从而显著增强
促进肌腱愈合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle S. Benoit其他文献
Danielle S. Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle S. Benoit', 18)}}的其他基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 16.94万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10467753 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10681217 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10612076 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Bone-targeted polymer therapeutics for nonunion fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10371267 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10733942 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10709483 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
hiPSC-derived tissue mimetics of the retina blood barrier
hiPSC 衍生的视网膜血屏障组织模拟物
- 批准号:
10080730 - 财政年份:2020
- 资助金额:
$ 16.94万 - 项目类别:
Engineered salivary gland tissue chips (Administrative Supplement)
工程唾液腺组织芯片(行政补充)
- 批准号:
10426429 - 财政年份:2017
- 资助金额:
$ 16.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 16.94万 - 项目类别:
Research Grant














{{item.name}}会员




