Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
基本信息
- 批准号:10709483
- 负责人:
- 金额:$ 62.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesivesAdultAge YearsAge related macular degenerationAmericanArchitectureBiochemicalBiologyBiophysicsBlindnessBlood VesselsBlood capillariesBlood-Retinal BarrierBruch&aposs basal membrane structureCell CommunicationCell DeathCell modelCell secretionCellsChoroidal NeovascularizationClinicalComplexCuesDataDegenerative DisorderDepositionDevelopmentDiameterDiffusionDiseaseDisease modelDrug ScreeningDrusenElasticityEmbryoEncapsulatedEndothelial CellsEndotheliumEngineeringEpithelial CellsExtracellular MatrixEyeEye diseasesFunctional disorderGelGrowth FactorHealthHumanHydrogelsImpairmentIn VitroIndividualLeadMatrix MetalloproteinasesMediatingMembraneMesenchymal Stem CellsMesenchymeMicrofluidicsModelingModulusMorphogenesisMorphologyNeural RetinaNutrientOutcome MeasurePathologicPathologyPatientsPatternPeptidesPerfusionPhagocytosisPhenocopyPhotoreceptorsPhysiologicalPhysiologyPigmentation physiologic functionPropertyProteomicsQualifyingRetinaRetinal DegenerationRetinal PigmentsStructureStructure of retinal pigment epitheliumTestingTissue ModelTissuesTransplantationVEGFA geneVascular blood supplyVertebratesVisioncell typedensityepithelial stem cellethylene glycolhistological studiesin vitro Modelin vivoinduced pluripotent stem cellmicrofluidic technologymimeticsmonolayermultidisciplinaryretinogenesisshear stressstem cellstranscriptomics
项目摘要
The outer blood retina barrier (oBRB) comprises of the retinal pigment epithelium (RPE) cells and underlying
fenestrated choriocapillaris (CC) that interfaces with the blood supply. The RPE-CC complex functions
synergistically to support photoreceptor cell health that is critical for vision. Consistently, dysfunction of the RPE-
CC leads to retinal degeneration in myraid eye diseases, including age-related macular degeneration (AMD),
the single biggest cause of irreversible blindness in adults > 50 years of age in the US. However, the lack of in
vitro tissue mimetics that faithfully recapitulate the RPE-CC complex has significantly impaired the study of
normal and diseased physiology of the oBRB. A major challenge for the development of RPE-CC tissue mimetics
is our limited understanding of human retinogenesis. This is especially relevant to the CC layer in which the
majority of inferences are drawn from histological studies of embryonic human retina. Human induced pluripotent
stem cells (hiPSCs) provide a unique platform to develop in vitro oBRB models. Indeed, several studies have
now shown that specific cell types relevant to the RPE-CC complex, including RPE, endothelial cells (ECs) and
mesenchymal stem cells (MSCs) can be differentiated from hiPSCs. Furthermore, we have recently developed
a primitive RPE-CC tissue mimetic by exploiting the versatility of poly(ethylene glycol)(PEG) hydrogel-based
engineered ECM (eECM) and hiPSC-derived target cells to emulate the spatial organization of RPE, ECs, and
mesenchyme. The RPE-CC tissue mimetic is able to recapitulate important physiological features of the in vivo
RPE-CC complex, such as CC-like fenestrated vasculature, that had previously been elusive in vitro. Although
this model provides a framework for physiological RPE-CC development, it currently has several limitations,
including unoptimized eECM biochemical and biophysical cues, lack of developmentally-instructed temporal cell-
cell cues, and absence of vascular perfusion, resulting in a tissue model that does not fully recapitulate in vivo
structure (e.g., well-defined Bruch’s membrane-like ECM and CC spatial angioarchitecture) and function (e.g.,
nutrient transport and macromolecular diffusion). In this proposal, we hypothesize that better understanding of
the eECM requirements (Aim 1), ii) incorporation of temporal developmental cues (Aim 2), and integration of
vascular perfusion, (Aim 3) will promote development of modular, spatially relevant, and functional RPE-CC
tissue mimetic(s). Ultimately, the development of a physiological and modular human outer retina (RPE-CC)
tissue mimetic will have important implications for subsequent disease modeling, drug screening, and
transplantation studies.
外血视网膜屏障(oBRB)由视网膜色素上皮(RPE)细胞和下层视网膜色素上皮(RPE)细胞组成。
有孔脉络膜毛细血管(CC)与血液供应接口。RPE-CC复合函数
协同作用,支持对视力至关重要的感光细胞健康。一致的,视网膜色素上皮的功能障碍-
CC导致近视性眼病中的视网膜变性,包括年龄相关性黄斑变性(AMD),
是美国50岁以上成年人不可逆失明的最大原因。然而,缺乏在
忠实地再现RPE-CC复合物的体外组织模拟物显著损害了对RPE-CC复合物的研究。
obRB的正常和患病生理。RPE-CC组织模拟物开发的主要挑战
是我们对人类视网膜发生的有限理解。这尤其与CC层相关,在CC层中,
大多数推论都是从胚胎人类视网膜的组织学研究中得出的。人诱导多能
干细胞(hiPSC)提供了开发体外oBRB模型的独特平台。事实上,有几项研究
现在显示,与RPE-CC复合物相关的特定细胞类型,包括RPE、内皮细胞(EC)和
间充质干细胞(MSC)可以从hiPSC分化。此外,我们最近开发了
一种原始的RPE-CC组织模拟物,通过利用聚(乙二醇)(PEG)水凝胶基
工程化ECM(eECM)和hiPSC衍生的靶细胞,以模拟RPE、EC和
间充质RPE-CC组织模拟物能够重现体内细胞的重要生理特征,
RPE-CC复合物,如CC样有孔血管,以前在体外难以实现。虽然
该模型提供了生理RPE-CC发展的框架,目前它有几个局限性,
包括未优化的eECM生化和生物物理线索,缺乏发育指导的颞叶细胞,
细胞提示,以及缺乏血管灌注,导致组织模型在体内不能完全重现
结构(例如,明确的Bruch膜样ECM和CC空间血管结构)和功能(例如,
营养物质运输和大分子扩散)。在这个建议中,我们假设,更好地了解
eECM要求(目标1),ii)纳入时间发育线索(目标2),以及整合
血管灌注(目的3)将促进模块化、空间相关和功能性RPE-CC的发展
组织模拟物。最终,开发出生理性和模块化的人类外视网膜(RPE-CC)
组织模拟物将对随后的疾病建模、药物筛选和
移植研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radical-Mediated Degradation of Thiol-Maleimide Hydrogels.
- DOI:10.1002/advs.202402191
- 发表时间:2024-04
- 期刊:
- 影响因子:15.1
- 作者:T. S. Hebner;Bruce E. Kirkpatrick;Benjamin D Fairbanks;Christopher N. Bowman;K. Anseth;Danielle S. W. Benoit
- 通讯作者:T. S. Hebner;Bruce E. Kirkpatrick;Benjamin D Fairbanks;Christopher N. Bowman;K. Anseth;Danielle S. W. Benoit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle S. Benoit其他文献
Danielle S. Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle S. Benoit', 18)}}的其他基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 62.29万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10467753 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10461486 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10681217 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10612076 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Bone-targeted polymer therapeutics for nonunion fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10371267 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10733942 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
hiPSC-derived tissue mimetics of the retina blood barrier
hiPSC 衍生的视网膜血屏障组织模拟物
- 批准号:
10080730 - 财政年份:2020
- 资助金额:
$ 62.29万 - 项目类别:
Engineered salivary gland tissue chips (Administrative Supplement)
工程唾液腺组织芯片(行政补充)
- 批准号:
10426429 - 财政年份:2017
- 资助金额:
$ 62.29万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 62.29万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 62.29万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 62.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 62.29万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 62.29万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 62.29万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 62.29万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 62.29万 - 项目类别:
Investment Accelerator