Revealing the transcriptomic basis of neuronal identity through functional meta-analysis
通过功能荟萃分析揭示神经元身份的转录组学基础
基本信息
- 批准号:10224662
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAffectAgreementAlgorithmsBiologicalBiological AssayCellsCharacteristicsCommunitiesComputer softwareConsensusCrowdingCustomDataData AnalysesData DiscoveryDiseaseGene ExpressionGene Expression ProfileGenesGeneticGenetic TranscriptionGoalsGroupingHumanIndividualJointsKnowledgeLabelLaboratoriesLaboratory StudyLearningLibrariesLightLinkMachine LearningMeta-AnalysisMethodsNervous system structureNeuronsNeurosciencesNoiseOutputPathway interactionsPatternPhenotypePositioning AttributePropertyPublishingReportingReproducibilityResearchResourcesRoleSignal TransductionStructureSystemTranscriptValidationVariantWorkanalytical methodbasecandidate markercell typedata resourceexhaustionfunctional groupgene functionimprovedin situ sequencinginterestlearning algorithmmachine learning algorithmnervous system disordernovelprogramsscreeningsingle-cell RNA sequencingtranscriptomicsweb server
项目摘要
PROJECT SUMMARY
Our overarching goal is to understand how the relationships between genes contribute to functional properties
in neurons and how those functions combine to define types of neurons. This is a central question of basic
neuroscience, and one which is newly assessable using single cell RNA sequencing (scRNA-seq). These data
provide high-throughput snapshots of gene activities across thousands of cells and thus shed new light on the
relationships between genes within and across cells. We propose to exploit this data in conjunction with
previously known details about gene function and neuronal identity to learn new features of both. Our
research approach is meta-analytic, using data from many different laboratories to obtain a more robust
aggregate signal. In addition to developing meta-analytic methods to pursue our direct research interests, the
methods are of broad practical relevance to neuroscience laboratories studying many different questions,
including diseases of the nervous system. Disseminating our software deliverables in a convenient-to-use form
is a central component of each of our research objectives.
The three complementary objectives in this project are to:
1. Learn patterns of gene expression which characterize known cell identity. Building on our
previous research showing conserved expression patterns across cell-types, we will define shared gene
expression patterns, called co-expression, specific to neuronal sub-populations. These shared expression
patterns will be used as an assay into cellular identity.
2.Identify novel cell subtypes through changes in the expression relationships between genes.
Variation in co-expression is a form of transcriptional rewiring which often indicates a change in function. To
find novel neuronal sub-types we will assess the data for changes in co-expression reflecting a change in
functions linked to neuronal identity. We will identify novel transcriptional signatures which replicate across
laboratories.
3. Determine consensus methods for customized cell-type learning. Defining wholly unknown
expression profiles is likely to benefit from a variety of approaches. In order to find agreement between those
approaches, we will develop an algorithm to efficiently search through gene sets likely to find those with
complementary value. These gene sets will then be assessed across many pre-existing methods, with
customized combinations and aggregate output reported and made available through a public web-server.
项目概要
我们的首要目标是了解基因之间的关系如何影响功能特性
神经元的功能以及这些功能如何结合起来定义神经元的类型。这是一个基本的核心问题
神经科学,以及最近可使用单细胞 RNA 测序 (scRNA-seq) 进行评估的一门学科。这些数据
提供数千个细胞基因活动的高通量快照,从而为了解
细胞内和细胞间基因之间的关系。我们建议结合使用这些数据
先前已知的有关基因功能和神经元身份的详细信息,以了解两者的新特征。我们的
研究方法是荟萃分析,使用来自许多不同实验室的数据来获得更可靠的结果
聚合信号。除了开发元分析方法来追求我们的直接研究兴趣之外,
方法对于研究许多不同问题的神经科学实验室具有广泛的实际意义,
包括神经系统疾病。以方便使用的形式传播我们的软件交付成果
是我们每个研究目标的核心组成部分。
该项目的三个互补目标是:
1. 了解表征已知细胞身份的基因表达模式。建立在我们的
先前的研究显示跨细胞类型的保守表达模式,我们将定义共享基因
特定于神经元亚群的表达模式,称为共表达。这些共同的表达
模式将被用作细胞身份的测定。
2.通过基因之间表达关系的变化识别新的细胞亚型。
共表达的变异是转录重连的一种形式,通常表明功能的变化。到
找到新的神经元亚型,我们将评估共表达变化的数据,反映了
与神经元身份相关的功能。我们将识别新的转录特征,这些特征可以在不同的区域复制
实验室。
3. 确定定制细胞类型学习的共识方法。完全未知的定义
表达谱可能会受益于多种方法。为了在这些人之间达成一致
方法,我们将开发一种算法来有效地搜索基因集,可能会找到那些具有
互补价值。然后,这些基因集将通过许多现有的方法进行评估,其中
定制的组合和聚合输出通过公共网络服务器报告和提供。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrative analysis methods for spatial transcriptomics.
空间转录组学的综合分析方法。
- DOI:10.1038/s41592-021-01272-7
- 发表时间:2021
- 期刊:
- 影响因子:48
- 作者:Lu,Shaina;Fürth,Daniel;Gillis,Jesse
- 通讯作者:Gillis,Jesse
Population variability in X-chromosome inactivation across 9 mammalian species.
9 种哺乳动物 X 染色体失活的群体变异。
- DOI:10.1101/2023.10.17.562732
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Werner,JonathanM;Hover,John;Gillis,Jesse
- 通讯作者:Gillis,Jesse
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Gillis其他文献
Jesse Gillis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Gillis', 18)}}的其他基金
Scalable Molecular Pipelines for FAIR and Reusable BICAN Molecular Data
用于公平和可重复使用的 BICAN 分子数据的可扩展分子管道
- 批准号:
10686157 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Scalable Molecular Pipelines for FAIR and Reusable BICAN Molecular Data
用于公平和可重复使用的 BICAN 分子数据的可扩展分子管道
- 批准号:
10523659 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Heuristics to evaluate biomedical and genomic knowledge bases for validity
启发式评估生物医学和基因组知识库的有效性
- 批准号:
9765396 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists