Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
基本信息
- 批准号:10226322
- 负责人:
- 金额:$ 22.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAge related macular degenerationApplications GrantsAreaBiologicalBlindnessBlood VesselsCategoriesCharacteristicsClinicalClinical ManagementCohort StudiesCollectionColorCommunitiesComputer softwareDataData SetDevelopmentDiagnosisDiseaseDisease ManagementDisease ProgressionDisease susceptibilityEarly DiagnosisElderlyExposure toEye diseasesGenesGeneticGenotypeGrowthImageIndividualInjectionsInternationalKnowledgeMachine LearningMethodsModelingMonitorNational Eye InstituteNetwork-basedOnline SystemsOphthalmologistPhenotypePositioning AttributeProgressive DiseaseResearchResearch PersonnelRiskSamplingSeveritiesSoftware ToolsStatistical MethodsSubgroupSusceptibility GeneTechniquesTestingTimeTrainingUniversitiesVascular Endothelial Growth FactorsWorkanalytical methodbasebiobankclinical phenotypecohortcomputerized toolsconvolutional neural networkdata repositorydatabase of Genotypes and Phenotypesdeep learningdeep neural networkfundus imaginggenome wide association studygenome-widegenome-wide analysisgraphical user interfaceimprovedindividualized medicineinnovationinterestlearning strategyneural networknovelpersonalized predictionspersonalized risk predictionpredictive modelingpublic repositorysecondary analysissuccesssynergismuser friendly softwareuser-friendlyweb based interfaceweb interface
项目摘要
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness worldwide. Successful
genome-wide association studies (GWAS) of AMD have identified many disease-susceptibility genes. Through
great efforts from international GWAS consortium and large-scale collaborative projects, massive datasets
including high-quality GWAS data and well-characterized clinical phenotypes are now available in public
repositories such as dbGaP and UK Biobank. Clinically, color fundus images have been extensively used by
ophthalmologists to diagnose AMD and its severity level. The combination of wealthy GWAS data and fundus
image data provides an unprecedented opportunity for researchers to test new hypotheses that are beyond the
objectives of original projects. Among them, predictive models for AMD development and its progression based
on both GWAS and fundus image data have not been explored. Most existing prediction models only focus on
classic statistical approaches, often regression models with a limited number of predictors (e.g., SNPs).
Moreover, most predictions only give static risks rather than dynamic risk trajectories over time, of which the
latter is more informative for a progressive disease like AMD. Recent advances of machine learning techniques,
particularly deep learning, have been proven to significantly improve prediction accuracy by incorporating
multiple layers of hidden non-linear effects when large-scale training datasets with well-defined phenotypes are
available. Despite its success in many areas, deep learning has not been fully explored in AMD and other eye
diseases. Motivated by multiple large-scale studies of AMD development or progression, where GWAS and/or
longitudinal fundus image data have been collected, we propose novel deep learning methods for predicting
AMD status and its progression, and to identify subgroups with significant different risk profiles. Specially, in Aim
1, we will construct a novel local convolutional neural network to predict disease occurrence (AMD or not) and
severity (e.g., mild AMD, intermediate AMD, late AMD) based on (1a): a large cohort of 35,000+ individuals with
GWAS data and (1b): a smaller cohort of 4,000+ individuals with both GWAS and fundus image data. In Aim 2,
we will develop a novel deep neural network survival model for predicting individual disease progression
trajectory (e.g., time to late-AMD). In both aims, we will use the local linear approximation technique to identify
important predictors that contribute to individual risk profile prediction and to identify subgroups with different risk
profiles. In Aim 3, we will validate and calibrate our methods using independent cohorts and implement proposed
methods into user-friendly software and easy-to-access web interface. With the very recent FDA approval for
Beovu, a novel injection treatment for wet AMD (one type of late AMD) by inhibiting VEGF and thus suppressing
the growth of abnormal blood vessels, it makes our study more significant, as it will provide most cutting-edge
and comprehensive prediction models for AMD which have great potential to facilitate early diagnosis and
tailored treatment and clinical management of the disease.
视网膜相关性黄斑变性(AMD)是全世界不可逆失明的主要原因。成功
AMD的全基因组关联研究(GWAS)已经鉴定了许多疾病易感基因。通过
国际GWAS联盟的巨大努力和大型合作项目、海量数据集
包括高质量的GWAS数据和良好表征的临床表型,
dbGaP和UK Biobank等数据库。在临床上,彩色眼底图像已被广泛使用,
眼科医生诊断AMD及其严重程度。丰富的GWAS数据和眼底
图像数据为研究人员提供了前所未有的机会来测试新的假设,
原始项目的目标。其中,AMD发展及其进展的预测模型基于
对GWAS和眼底图像数据的影响尚未研究。现有的大多数预测模型只关注
经典的统计方法,通常是具有有限数量的预测因子的回归模型(例如,SNP)。
此外,大多数预测只给出静态风险,而不是随时间变化的动态风险轨迹,其中
后者对于像AMD这样的进行性疾病更有信息量。机器学习技术的最新进展,
特别是深度学习,已经被证明可以通过结合
当具有明确表型的大规模训练数据集被
available.尽管深度学习在许多领域取得了成功,但在AMD和其他公司的眼中,
疾病受AMD发展或进展的多项大规模研究的启发,其中GWAS和/或
纵向眼底图像数据已经收集,我们提出了新的深度学习方法来预测
AMD状态及其进展,并确定具有显著不同风险特征的亚组。特别是,在Aim
1,我们将构建一个新的局部卷积神经网络来预测疾病的发生(AMD与否),
严重性(例如,轻度AMD、中度AMD、晚期AMD),基于(1a):35,000+个体的大型队列,
GWAS数据和(1b):具有GWAS和眼底图像数据的4,000多名个体的较小队列。在目标2中,
我们将开发一种新的深度神经网络生存模型,用于预测个体疾病进展,
轨迹(例如,到晚期AMD的时间)。在这两个目标中,我们将使用局部线性逼近技术来识别
有助于预测个体风险状况和识别具有不同风险的亚组的重要预测因子
数据区.在目标3中,我们将使用独立的队列验证和校准我们的方法,并实现提出的方法。
将这些方法转化为用户友好的软件和易于访问的Web界面。最近FDA批准了
Beovu是一种治疗湿性AMD(晚期AMD的一种)的新型注射剂,通过抑制VEGF,从而抑制
异常血管的生长,它使我们的研究更有意义,因为它将提供最前沿的
和AMD的综合预测模型,其具有促进早期诊断的巨大潜力,
定制治疗和疾病的临床管理。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies.
- DOI:10.3389/fgene.2023.1075824
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Zhou, Xueping;Zhang, Jipeng;Ding, Ying;Huang, Heng;Li, Yanming;Chen, Wei
- 通讯作者:Chen, Wei
Genome-wide association study-based deep learning for survival prediction.
- DOI:10.1002/sim.8743
- 发表时间:2020-12-30
- 期刊:
- 影响因子:2
- 作者:Sun T;Wei Y;Chen W;Ding Y
- 通讯作者:Ding Y
LONGL-Net: temporal correlation structure guided deep learning model to predict longitudinal age-related macular degeneration severity.
- DOI:10.1093/pnasnexus/pgab003
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Ganjdanesh A;Zhang J;Chew EY;Ding Y;Huang H;Chen W
- 通讯作者:Chen W
Genome-Wide Association Studies-Based Machine Learning for Prediction of Age-Related Macular Degeneration Risk.
- DOI:10.1167/tvst.10.2.29
- 发表时间:2021-02-05
- 期刊:
- 影响因子:3
- 作者:Yan Q;Jiang Y;Huang H;Swaroop A;Chew EY;Weeks DE;Chen W;Ding Y
- 通讯作者:Ding Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
- 批准号:
10525401 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 22.03万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 22.03万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 22.03万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10056062 - 财政年份:2020
- 资助金额:
$ 22.03万 - 项目类别:
相似海外基金
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 22.03万 - 项目类别:
EU-Funded
Inhibiting Neovascularization and Subretinal Fibrosis in Neovascular Age-Related Macular Degeneration
抑制新生血管性年龄相关性黄斑变性的新生血管形成和视网膜下纤维化
- 批准号:
10639785 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Inhibition of melanogenesis in retinal pigment epithelium, a contributing factor in age-related macular degeneration
抑制视网膜色素上皮中的黑色素生成,这是年龄相关性黄斑变性的一个促成因素
- 批准号:
23K09052 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Evaluation of New Anti-inflammatory Treatments for Age-Related Macular Degeneration
年龄相关性黄斑变性的新型抗炎治疗方法的评价
- 批准号:
10642988 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Progression of Early Atrophic Lesions in Age-related Macular degeneration
年龄相关性黄斑变性早期萎缩性病变的进展
- 批准号:
10635325 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Cellular and molecular mechanisms of AIM2 and NLRP3 inflammasome activation in age-related macular degeneration
年龄相关性黄斑变性中 AIM2 和 NLRP3 炎症小体激活的细胞和分子机制
- 批准号:
10584110 - 财政年份:2023
- 资助金额:
$ 22.03万 - 项目类别:
Elucidation of roles of mast cells and macrophages in the pathogenesis of age-related macular degeneration
阐明肥大细胞和巨噬细胞在年龄相关性黄斑变性发病机制中的作用
- 批准号:
22H03243 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
AMD Mitochondria Modulate Expression of microRNA 135b-5p and 148a-3p in RPE Cybrids: Implications for Age-related Macular Degeneration
AMD 线粒体调节 RPE Cybrids 中 microRNA 135b-5p 和 148a-3p 的表达:对年龄相关性黄斑变性的影响
- 批准号:
10433610 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别:
Targeting the inflammatory response in age-related macular degeneration
针对年龄相关性黄斑变性的炎症反应
- 批准号:
10504138 - 财政年份:2022
- 资助金额:
$ 22.03万 - 项目类别: