SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate

SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速

基本信息

  • 批准号:
    10601180
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Vision loss is among the top 10 causes of disability in the U.S in adults over the age of 18 and one of the most common disabling conditions in children. The major ocular diseases are caused by the retinal chronic progressive neurodegeneration and unfortunately are irreversible and incurable, thus the early diagnosis of ocular diseases is crucial for clinician to provide retinoprotection. Recent advances in ophthalmological imaging and high throughput genotyping and sequencing techniques provide exciting new opportunities to ultimately improve our understanding of ocular diseases, their genetic architecture, and their influences on endophenotype and function. However, existing studies of genetics and retinal images are only conducted separately, wasting the opportunity to explore the interplay between genetics and retinal images. Therefore, there is a critical need for new machine learning and scientific advances to reveal genetic basis of retinal imaging endophenotypes and to synergize genetics and imaging for understanding disease progression. We propose to conduct the novel retinal imaging genetics research to integratively study both retinal images and genetic data for automated ocular disease diagnosis and prognosis, genetic association study of endophenotype, and disease progression prediction. Our group has performed pioneering research on retinal genetics, prediction, and image analysis, therefore we are in a unique position to achieve these goals. Specifically, we will investigate the following aims: 1) build efficient data integration models to integrate retinal imaging genetics data from multiple sources; 2) develop knowledge guided learning models for identifying nonlinear associations among high-dimensional retinal imaging genetics data; 3) detect the longitudinal interrelations in retinal data utilizing temporal deep learning model; 4) new robust fair metric learning model to unify the disease prediction and fair metric selection; 5) apply and validate the proposed machine learning methods to large-scale retinal imaging genetics data from multiple independent cohorts. The successful completion of this proposal will produce cutting-edge machine learning tools to facilitate automated disease diagnosis and accurate long-term prediction of disease development and progression trajectory, which will enhance the early prevention and current clinical management of the disease and will provide insights for novel precision treatment development.
视力丧失是美国18岁以上成年人残疾的十大原因之一,也是最常见的原因之一。 儿童常见的残疾状况。主要的眼部疾病是由视网膜慢性病变引起的 进行性神经变性,不幸的是是不可逆的和不可治愈的,因此早期诊断 眼科疾病是临床医生提供视网膜保护的关键。眼科新进展 成像和高通量基因分型和测序技术提供了令人兴奋的新机会, 最终提高我们对眼部疾病的理解,他们的遗传结构,以及他们对眼睛的影响。 内表型和功能。然而,现有的遗传学和视网膜图像的研究, 这就浪费了探索遗传学和视网膜图像之间相互作用的机会。因此,我们认为, 迫切需要新的机器学习和科学进步来揭示视网膜病变的遗传基础。 成像内表型和协同遗传学和成像理解疾病进展。我们 建议进行新的视网膜成像遗传学研究,以综合研究视网膜图像和 用于自动眼科疾病诊断和预后的遗传数据, 内表型和疾病进展预测。我们的团队对视网膜神经元进行了开创性的研究 遗传学,预测和图像分析,因此我们处于实现这些目标的独特位置。 具体来说,我们将研究以下目标:1)建立有效的数据集成模型, 来自多个来源的视网膜成像遗传学数据; 2)开发知识引导的学习模型, 识别高维视网膜成像遗传学数据之间的非线性关联; 3)检测 利用时间深度学习模型的视网膜数据中的纵向相互关系; 4)新的鲁棒公平度量 学习模型,以统一疾病预测和公平的度量选择; 5)应用并验证所提出的 机器学习方法用于来自多个独立队列的大规模视网膜成像遗传学数据。的 成功完成这一提案将产生尖端的机器学习工具,以促进 自动化疾病诊断和准确的疾病发展和进展的长期预测 这将加强疾病的早期预防和目前的临床管理, 为新的精密治疗开发提供见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
  • 批准号:
    10564824
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
  • 批准号:
    10714863
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10665804
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
  • 批准号:
    10525401
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
  • 批准号:
    10414184
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
  • 批准号:
    10226322
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10043972
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10268184
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10463737
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
  • 批准号:
    10056062
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了