SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
基本信息
- 批准号:10665804
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdultAgeBig DataBlindnessChildChronicClinical DataClinical ManagementComplexDataData ScienceData SetDecision Support SystemsDevelopmentDimensionsDiseaseDisease ManagementDisease ProgressionEarly DiagnosisEyeEye diseasesFoundationsGeneticGenetic DeterminismGenetic MarkersGenetic ResearchGenetic studyGenomicsGenotypeGoalsHeterogeneityImageImage AnalysisInternationalInterventionJointsKnowledgeLearningMachine LearningMiningModelingOphthalmologistOphthalmologyOutcomePathogenesisPatient MonitoringPatientsPlayPositioning AttributePrecision therapeuticsPreventionReportingResearchRetinaRiskRisk FactorsRoleScientific Advances and AccomplishmentsSoftware ToolsSpecialistSystemSystems BiologyTechniquesTimeValidationVariantcase controlcohortdata complexitydata integrationdata miningdeep learning modeldesigndisabilitydisease diagnosisdisease prognosisendophenotypegenetic architecturegenetic associationgenome wide association studygenome-widehealth dataheterogenous datahigh dimensionalityhigh riskimaging geneticsimprovedinnovationinsightmachine learning algorithmmachine learning frameworkmachine learning methodmultiple data sourcesnovelpersonalized health careprogression riskprogressive neurodegenerationrare variantretinal imagingrisk variantsuccesssynergismtherapy developmenttoolwasting
项目摘要
Vision loss is among the top 10 causes of disability in the U.S in adults over the age of 18 and one of the most
common disabling conditions in children. The major ocular diseases are caused by the retinal chronic
progressive neurodegeneration and unfortunately are irreversible and incurable, thus the early diagnosis of
ocular diseases is crucial for clinician to provide retinoprotection. Recent advances in ophthalmological
imaging and high throughput genotyping and sequencing techniques provide exciting new opportunities to
ultimately improve our understanding of ocular diseases, their genetic architecture, and their influences on
endophenotype and function. However, existing studies of genetics and retinal images are only conducted
separately, wasting the opportunity to explore the interplay between genetics and retinal images. Therefore,
there is a critical need for new machine learning and scientific advances to reveal genetic basis of retinal
imaging endophenotypes and to synergize genetics and imaging for understanding disease progression. We
propose to conduct the novel retinal imaging genetics research to integratively study both retinal images and
genetic data for automated ocular disease diagnosis and prognosis, genetic association study of
endophenotype, and disease progression prediction. Our group has performed pioneering research on retinal
genetics, prediction, and image analysis, therefore we are in a unique position to achieve these goals.
Specifically, we will investigate the following aims: 1) build efficient data integration models to integrate
retinal imaging genetics data from multiple sources; 2) develop knowledge guided learning models for
identifying nonlinear associations among high-dimensional retinal imaging genetics data; 3) detect the
longitudinal interrelations in retinal data utilizing temporal deep learning model; 4) new robust fair metric
learning model to unify the disease prediction and fair metric selection; 5) apply and validate the proposed
machine learning methods to large-scale retinal imaging genetics data from multiple independent cohorts. The
successful completion of this proposal will produce cutting-edge machine learning tools to facilitate
automated disease diagnosis and accurate long-term prediction of disease development and progression
trajectory, which will enhance the early prevention and current clinical management of the disease and will
provide insights for novel precision treatment development.
在美国,视力丧失是导致18岁以上成年人残疾的十大原因之一,也是导致残疾的最主要原因之一
儿童常见的致残情况。眼部的主要疾病是由视网膜慢性疾病引起的。
进行性神经变性和不幸的是不可逆转和不可治愈,因此早期诊断为
眼科疾病是临床医生提供视网膜保护的关键。眼科学的最新进展
成像和高通量基因分型和测序技术提供了令人兴奋的新机会
最终提高我们对眼部疾病、它们的遗传结构以及它们对
内表型和功能。然而,现有的遗传学和视网膜成像研究只进行了
另外,浪费了探索遗传学和视网膜图像之间相互作用的机会。因此,
迫切需要新的机器学习和科学进步来揭示视网膜的遗传基础
成像内表型,并协同遗传学和成像以了解疾病的进展。我们
建议开展新的视网膜成像遗传学研究,综合研究视网膜图像和
自动化眼病诊断和预后的遗传数据,遗传相关性研究
内表型和疾病进展预测。我们团队对视网膜进行了开创性的研究
遗传学、预测和图像分析,因此我们在实现这些目标方面处于独特的地位。
具体地说,我们将研究以下目标:1)构建高效的数据集成模型来集成
来自多个来源的视网膜成像遗传学数据;2)开发知识引导的学习模型
识别高维视网膜成像遗传学数据之间的非线性关联;3)检测
利用时间深度学习模型研究视网膜数据的纵向相关性;4)新的稳健公平度量
统一疾病预测和公平指标选择的学习模型;5)应用和验证
来自多个独立队列的大规模视网膜成像遗传学数据的机器学习方法。这个
这项提议的成功完成将产生尖端的机器学习工具,以促进
自动化疾病诊断和对疾病发展和进展的准确长期预测
这将加强对该疾病的早期预防和目前的临床管理,并将
为新的精准治疗发展提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
- 批准号:
10525401 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10226322 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10056062 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant














{{item.name}}会员




