Activation of phospholipase C beta enzymes by G beta-gamma and corresponding regulation of downstream ion channels
G beta-gamma 激活磷脂酶 C beta 酶以及下游离子通道的相应调节
基本信息
- 批准号:10228308
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgonistBindingBinding SitesBiologicalBioluminescenceCell membraneCellsCleaved cellComplexConflict (Psychology)CoupledCryoelectron MicroscopyElectron MicroscopyElectrophysiology (science)Energy TransferEnvironmentEnzymesFamilyFluorescenceFluorescence Resonance Energy TransferFluorescent ProbesFundingG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGrantHeart RateHormonesImageIn VitroInflammationIntracellular MembranesInvestigationIon ChannelKnowledgeLabelLinkLipid BilayersLiposomesLocationLuciferasesMeasurableMeasurementMeasuresMembraneMolecular ConformationMutagenesisNeurotransmittersNociceptionNucleotidesPathway interactionsPhosphatidylinositol 4,5-DiphosphatePhospholipase CPhospholipases APhysiological ProcessesPhysiologyPlayPotassium ChannelProteinsRegulationReporterResearchResearch PersonnelResourcesRoleSecond Messenger SystemsSideSignal PathwaySignal TransductionSignaling MoleculeStimulusStructureSupervisionSystemTimeTimeLineTrainingUniversitiesWritingcareer developmentcryogenicsdesignexperienceexperimental studyextracellularfluorescence microscopefluorophoreimprovedinsightmeetingsmolecular modelingnanomolarphospholipase C betapost-doctoral trainingprogramsreceptorreconstitutionresponsesingle moleculestudent mentoringsymposiumvoltage
项目摘要
Project Summary
Cells respond to many extracellular stimuli via G protein coupled receptors (GPCR). Extracellular signaling
molecules bind GPCR’s and catalyze the release of intracellular membrane anchored G proteins, Ga and Gbg,
which act on downstream targets. Ion channels are a downstream target of numerous GPCR signaling cascades,
connecting the cellular response to these stimuli to membrane excitability. GPCR-dependent regulation of ion
channels plays an essential role in many physiological processes including nociception, regulation of heart rate,
and inflammation; therefore, it is essential to understand this regulation. Ion channels can be regulated by GPCR
signaling directly by G proteins or by G protein-regulated second messengers, including phosphatidylinositol-
4,5-bisphosphate (PIP2). PIP2 is degraded by the G protein-dependent b family of phospholipase C (PLC)
enzymes, which cleave PIP2 to produce IP3 and DAG. Numerous families of ion channels are regulated by PIP2
in a PLCb-dependent manner, including inwardly rectifying K+ (Kir) channels and voltage-dependent K+ channels.
PLCb enzymes are activated by both Gaq and Gbg, linking their function to both Gaq and Gai-coupled receptors.
While the regulation by Gaq is well-understood, much is unknown regarding the Gbg-dependent activation. In
order to understand the GPCR-dependent regulation of downstream ion channels and the associated
physiological processes, it is necessary to understand the G protein regulation of PLCb enzymes, which are the
key signaling intermediate. To this end, I propose to study the Gbg-dependent activation of PLCb enzymes via
the following two aims: (1) Investigate the minimal requirements for Gbg-dependent activation of PLCb enzymes
and the regulation of downstream ion channels using a cell-free reconstituted system, (2) Characterize the
interaction between Gbg and PLCb including localization of the binding site and characterization of the Gbg-
dependent conformational changes using cryogenic electron microscopy and bioluminescence resonance
energy transfer. Successful completion of these aims will directly connect PLCb regulation to its effect on ion
channels, expanding the knowledge of these signaling cascades. This project will be conducted under the
supervision of Dr. Roderick MacKinnon at Rockefeller University. Dr. MacKinnon has extensive experience
studying the function and regulation of ion channels as well as training postdoctoral researchers to succeed as
independent researchers. Together, the lab and Rockefeller University generate an environment with the
resources and intellectual input necessary for completing the proposed project. The accompanying training plan
includes a timeline describing the completion of the proposed experiments and allocates time for personal and
career development including frequent meetings with Dr. MacKinnon, attending conferences to present the
findings, mentoring students, and grant writing to acquire funding for an independent research program.
项目摘要
细胞通过G蛋白偶联受体(GPCR)对许多细胞外刺激反应。细胞外信号传导
分子结合GPCR并催化细胞内膜锚定G蛋白的释放,GA和GBG,
在下游目标上起作用。离子通道是许多GPCR信号级联的下游目标,
将细胞反应与这些刺激的响应连接到令人兴奋的膜。离子的GPCR依赖性调节
通道在许多物理过程中起着至关重要的作用,包括伤害感受,心率调节,
和炎症;因此,必须了解这一法规至关重要。离子通道可以通过GPCR调节
直接通过G蛋白或G蛋白调节的第二个使者信号传导,包括磷脂酰肌醇 -
4,5-三磷酸(PIP2)。 PIP2被G蛋白依赖性B家族降解的磷脂酶C(PLC)降解
酶,清除PIP2生产IP3和DAG。许多离子通道家庭受PIP2的调节
以PLCB依赖性方式,包括向内整流K+(KIR)通道和电压依赖性K+通道。
PLCB酶都被GAQ和GBG激活,将其功能链接到GAQ和GAI耦合接收机。
尽管GAQ的调节是充分理解的,但在依赖GBG依赖性激活方面却尚不清楚。在
为了了解下游离子通道的GPCR依赖性调节和相关的
生理过程,有必要了解PLCB酶的G蛋白调节,这是
关键信号中间体。为此,我建议通过研究PLCB酶的GBG依赖性激活
以下两个目的:(1)研究PLCB酶的GBG依赖性激活的最小要求
以及使用无单元重构系统对下游离子通道进行调节,(2)表征
GBG和PLCB之间的相互作用,包括结合位点的定位以及GBG-的表征
使用低温电子显微镜和生物发光共振的依赖通信
能量转移。这些目标的成功完成将直接将PLCB调节与对离子的影响联系起来
渠道,扩展了这些信号级联的知识。该项目将在
洛克菲勒大学Roderick Mackinnon博士的监督。麦金农博士有丰富的经验
研究离子渠道的功能和调节以及培训博士后研究人员成功
独立研究人员。实验室和洛克菲勒大学共同创造了一个环境
完成拟议项目所需的资源和智力投入。参与培训计划
包括一个时间表,描述了拟议实验的完成,并为个人和个人分配时间
职业发展包括与Mackinnon博士的经常会面,参加会议,展示
调查结果,心理学生和授予写作,以获得独立研究计划的资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
maria Falzone其他文献
maria Falzone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('maria Falzone', 18)}}的其他基金
Activation of phospholipase C beta enzymes by G beta-gamma and corresponding regulation of downstream ion channels
G beta-gamma 激活磷脂酶 C beta 酶以及下游离子通道的相应调节
- 批准号:
10613895 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Activation of phospholipase C beta enzymes by G beta-gamma and corresponding regulation of downstream ion channels
G beta-gamma 激活磷脂酶 C beta 酶以及下游离子通道的相应调节
- 批准号:
10392874 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
相似国自然基金
DMWD结合LATS1通过负向调控Hippo-YAP信号通路促进恶性胶质瘤干性的分子机制
- 批准号:82302980
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异戊二烯化修饰Rac3结合PKD2/Arfaptin-2复合体介导MMP1/2囊泡分泌促进头颈鳞癌侵袭转移的机制研究
- 批准号:82303507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学探究RNA结合蛋白RBM22在5q-综合征中的功能与机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
结合诱导纤维生成肽长效抑制角膜新生血管形成治疗角膜病的机制
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
污水处理系统结合态雌激素的生物转化机制与风险削减研究
- 批准号:52370200
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Targeting Trained Immunity in Trauma-Induced Immune Dysregulation
针对创伤引起的免疫失调中训练有素的免疫力
- 批准号:
10714384 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
- 批准号:
10734513 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Targeting the allosteric sodium site with novel probes for delta opioid receptor
用新型 δ 阿片受体探针靶向变构钠位点
- 批准号:
10892532 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别: