TOPIC #411 - PHASE I SBIR CONTRACT - IMAGEDEPHI: IMAGE DE-IDENTIFICATION OF OR THE ACCELERATION OF CANCER RESEARCH
话题
基本信息
- 批准号:10274083
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2021-06-15
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will produce a unified method for detection, anonymization, and review of Protected Health Information (PHI) in imaging data files, especially as found in whole slide images. In order to share imaging data for cancer research, data files need to be anonymized by removing all PHI without removing or degrading the data more than necessary. An expandable set of file format handlers will be used to read a wide variety of image data along with associated textual information. A set of algorithms will be developed that detect PHI in text and images. Images and text will be de-identified, modifying the original files while tracking provenance. A user interface will be developed to easily facilitate review of the de-identified results, enabling a researcher to confirm anonymization and to further process data files that were not fully deidentified. In developing the detection, modification, and review process, the quality of the results will be measured, allowing each step to be improved over time. This will reduce the burden of sharing imaging data between researchers, allowing a broader range of information to be used in research and clinical work.
该项目将产生一种统一的方法,用于检测、匿名化和审查成像数据文件中受保护的健康信息(PHI),特别是在整个幻灯片图像中发现的PHI。为了共享癌症研究的成像数据,数据文件需要通过删除所有PHI而不删除或降级数据来匿名化。将使用一组可扩展的文件格式处理程序来读取各种各样的图像数据以及相关的文本信息。将开发一套算法来检测文本和图像中的PHI。图像和文本将被去识别,在跟踪来源的同时修改原始文件。将开发一个用户界面,方便审查去识别结果,使研究人员能够确认匿名化,并进一步处理未完全去识别的数据文件。在开发检测、修改和评审过程中,将测量结果的质量,允许每个步骤随着时间的推移得到改进。这将减轻研究人员之间共享成像数据的负担,允许更广泛的信息用于研究和临床工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID MANTHEY其他文献
DAVID MANTHEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID MANTHEY', 18)}}的其他基金
SBIR TOPIC 411 "IMAGEDEPHI: IMAGE DE-IDENTIFICATION FOR THE ACCELERATION OF CANCER RESEARCH"
SBIR 主题 411“IMAGEDEPHI:图像去识别以加速癌症研究”
- 批准号:
10726855 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
相似海外基金
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
- 批准号:
475572 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10809977 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:














{{item.name}}会员




