Bioengineering a novel electromagnetic perspective gene as a tool for wireless control of excitable cells
生物工程新型电磁透视基因作为无线控制可兴奋细胞的工具
基本信息
- 批准号:10200903
- 负责人:
- 金额:$ 51.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Basic ScienceBioinformaticsBiologic DevelopmentBiologicalBiological PacemakersBiomedical EngineeringBiosensorBrainBrain regionCalciumCardiacCardiac pacemakerCatfishCell membraneCell physiologyCellsChemicalsClinicCloningComplementComplexContralateralDeep Brain StimulationDevelopmentDisciplineDiseaseEffectivenessElectrodesElectromagnetic FieldsElectromagneticsElectronicsElectrophysiology (science)EngineeringForelimbFutureGene ActivationGenesGenetic Crossing OverGenetic EngineeringGlassGoalsGrowthHealth SciencesHeatingHumanImageImmunohistochemistryImplantIon ChannelKineticsLeadLightLimb structureMagnetismMammalian CellMembraneMembrane ProteinsMethodologyMethodsMicroelectrodesModern MedicineMolecularMolecular BiologyMotorMotor CortexMotor Evoked PotentialsMotor outputNatureNeuromodulatorNeuronsNeurosciencesOocytesOrganismPharmaceutical PreparationsPopulationPower SourcesProteinsRattusSkeletal MuscleSliceSmooth MuscleSpecificityStructureTechnologyTemperatureTestingTissuesUltrasonographyWireless TechnologyWorkXenopus laevisassociated symptombasebioinformatics toolcDNA Librarydesigneffectiveness testingelectronic pacemakerexcitatory neuronexpression cloningimprovedin vivoinfancyinhibitory neuronmotor controlneural circuitneuronal excitabilityneuroregulationnew technologynoninvasive brain stimulationnovelpromoterreceptorreduce symptomsremote controlresponsesensorside effectskillssynthetic biologytechnology developmenttooltransmission process
项目摘要
Abstract:
The ability to manipulate neuronal function in the living brain has a major impact both on
human health and basic sciences. In the past half century, neuronal modulation via implantable
microelectrodes in specific brain regions has been used to relief symptoms associated with a
variety of neuronal disorders. However, this approach suffers from the need to implant complex,
large and expansive electronic devices that depend on an external power supply, and the
unexpected and undesirable side effects that the actual placement of the neurostimulation
electrodes often produces. Recently, major advances in molecular and synthetic biology
facilitated the cloning and optimization of receptors and channels that allow modulation of
neuronal function in response to light, chemicals or temperature. However, the control of these
proteins requires invasive delivery of the activator. Therefore, a non-invasive, remote controlled
neuromodulator that can manipulate specific neuronal population in a non-invasive manner is an
unmet need.
To embark upon this challenge, we have investigated the potential of an alternative and
novel method to remotely control cellular function through the transmission of non-invasive,
electromagnetic fields (EMF). Using expression cloning, we have identified and cloned a single
gene that encodes to a protein that responds to EMF. This unique gene has never been
characterized before and was termed electromagnetic perceptive gene (EPG). EPG was cloned
and expressed in mammalian cells, neuronal cultures and in rat’s brain. Immunohistochemistry
showed that the expression of EPG is confined to the mammalian cell membrane, and that it
can be expressed in a specific population, and in specific brain regions of the rat. Calcium
imaging in mammalian cells and cultured neurons expressing EPG demonstrated that remote
activation by EMF significantly increases intracellular calcium concentrations, indicative of
cellular excitability. Moreover, wireless magnetic activation of EPG in rat motor cortex induced
motor evoked responses of the contralateral forelimb in vivo. We hypothesize that the EPG
technology will enable wireless control of neuronal function with cell, region and
temporal specificity. Here we propose to thoroughly characterize the EPG in the cellular,
molecular and functional levels. We will also test the effectiveness of the EPG technology to
wirelessly control neuronal function in vivo.
We anticipate that this new technology would transform the future of neuromodulation,
complement existing neuromodulation tools, and considerably contribute to the understanding of
complex neural circuits.
抽象的:
在活大脑中操纵神经元功能的能力都对
人类健康和基础科学。在过去的半个世纪中,神经元通过植入
特定大脑区域中的微电极已用于缓解与
各种神经元疾病。但是,这种方法不需要植入复合物,
依赖外部电源的大型且广泛的电子设备,
神经刺激的实际放置意外和不良副作用
电极通常会产生。最近,分子和合成生物学的重大进展
促进了接收器和频道的克隆和优化,以调制
响应光,化学或温度的神经元功能。但是,这些控制
蛋白质需要激活剂的侵入性递送。因此,非侵入性,遥控器控制
可以以非侵入性方式操纵特定神经元种群的神经调节剂是一种
未满足的需求。
为了应对这一挑战,我们研究了替代方案的潜力
通过非侵入性的传播来远程控制细胞功能的新方法
电磁场(EMF)。使用表达克隆,我们已经识别并克隆了一个
编码对EMF反应的蛋白质的基因。这个独特的基因从来没有
以前和称为电磁知觉基因(EPG)。 EPG被克隆
并在哺乳动物细胞,神经元培养物和大鼠大脑中表达。免疫组织化学
表明EPG的表达仅限于哺乳动物细胞膜,并且
可以在特定人群和大鼠的特定大脑区域中表达。钙
表达EPG的哺乳动物细胞和培养的神经元的成像证明了远程
EMF激活显着增加了细胞内钙的浓度,表明
细胞令人兴奋。此外,大鼠运动皮层诱导的EPG无线磁激活
运动诱发了体内对侧前肢的反应。我们假设EPG
技术将通过细胞,区域和
临时特异性。在这里,我们建议在细胞中彻底表征EPG,
分子和功能水平。我们还将测试EPG技术的有效性
无线控制体内神经元功能。
我们预计这项新技术将改变神经调节的未来,
补充现有的神经调节工具,并为理解
复杂的神经回路。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research.
- DOI:10.3390/biomedicines11082165
- 发表时间:2023-08-01
- 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Assaf A Gilad其他文献
Cardiac CEST-MRI for tracking stem cell survival and determining the role of CXCL2
- DOI:
10.1186/1532-429x-18-s1-p262 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Lina Alon;Dara Kraitchman;Michael Schär;Angel Cortez;Nirbhay N Yadav;Judy Cook;Peter V Johnston;Rebecca Krimins;Michael T McMahon;Peter van Zijl;Jeff W Bulte;Assaf A Gilad - 通讯作者:
Assaf A Gilad
Assaf A Gilad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Assaf A Gilad', 18)}}的其他基金
Semi-synthetic, magneto-photonic circuit for non-invasive control of cellular function
用于非侵入性控制细胞功能的半合成磁光子电路
- 批准号:
10277517 - 财政年份:2021
- 资助金额:
$ 51.49万 - 项目类别:
Molecular Imaging for Detection of Synthetic Biology Circuits, Oscillators and Toggle Switches in Regenerative Medicine
用于检测再生医学中的合成生物学电路、振荡器和拨动开关的分子成像
- 批准号:
10176612 - 财政年份:2018
- 资助金额:
$ 51.49万 - 项目类别:
Bioengineering a novel electromagnetic perspective gene as a tool for wireless control of excitable cells
生物工程新型电磁透视基因作为无线控制可兴奋细胞的工具
- 批准号:
9381612 - 财政年份:2017
- 资助金额:
$ 51.49万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8733830 - 财政年份:2012
- 资助金额:
$ 51.49万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8445212 - 财政年份:2012
- 资助金额:
$ 51.49万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8599497 - 财政年份:2012
- 资助金额:
$ 51.49万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8333669 - 财政年份:2012
- 资助金额:
$ 51.49万 - 项目类别:
Adaptive control of epileptic seizures using a genetically encoded sensor
使用基因编码传感器自适应控制癫痫发作
- 批准号:
8789397 - 财政年份:2012
- 资助金额:
$ 51.49万 - 项目类别:
Imaging of gene delivery in the central nervous system
中枢神经系统基因传递的成像
- 批准号:
7659274 - 财政年份:2009
- 资助金额:
$ 51.49万 - 项目类别:
Imaging of gene delivery in the central nervous system
中枢神经系统基因传递的成像
- 批准号:
7858506 - 财政年份:2009
- 资助金额:
$ 51.49万 - 项目类别:
相似国自然基金
2023年(第四届)国际生物数学与医学应用研讨会
- 批准号:12342004
- 批准年份:2023
- 资助金额:8.00 万元
- 项目类别:专项项目
突变和修饰重塑蛋白质亚细胞定位的生物信息学研究
- 批准号:32370698
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于生物信息学的类风湿性关节炎患者衰弱预测模型的构建与验证
- 批准号:82301786
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于结构表征的蛋白质与长链非编码RNA相互作用预测的生物信息学方法研究
- 批准号:62373216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
- 批准号:32300528
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Small Molecule Inhibitors and Biologic Agents for Treatment of Glioblastoma Using Intracerebral Microdialysis and Signatures of Vulnerability
利用脑内微透析和脆弱性特征开发用于治疗胶质母细胞瘤的小分子抑制剂和生物制剂
- 批准号:
10696180 - 财政年份:2021
- 资助金额:
$ 51.49万 - 项目类别:
Development of Small Molecule Inhibitors and Biologic Agents for Treatment of Glioblastoma Using Intracerebral Microdialysis and Signatures of Vulnerability
利用脑内微透析和脆弱性特征开发用于治疗胶质母细胞瘤的小分子抑制剂和生物制剂
- 批准号:
10306300 - 财政年份:2021
- 资助金额:
$ 51.49万 - 项目类别:
Development of Small Molecule Inhibitors and Biologic Agents for Treatment of Glioblastoma Using Intracerebral Microdialysis and Signatures of Vulnerability
利用脑内微透析和脆弱性特征开发用于治疗胶质母细胞瘤的小分子抑制剂和生物制剂
- 批准号:
10488199 - 财政年份:2021
- 资助金额:
$ 51.49万 - 项目类别:
Fostering Research Mentorship and Training During Psychiatry Residency
在精神病学住院医师期间促进研究指导和培训
- 批准号:
10168709 - 财政年份:2011
- 资助金额:
$ 51.49万 - 项目类别:
Fostering Research Mentorship and Training During Psychiatry Residency
在精神病学住院医师期间促进研究指导和培训
- 批准号:
10166927 - 财政年份:2011
- 资助金额:
$ 51.49万 - 项目类别: